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PREFACE
Does the use of ChatGPT to practice homework problems improve
scores? Were mask mandates motivated by politics during the
COVID-19 pandemic? Are there differences in education levels
among men and women who use online dating applications? Do
students from high-income families earn higher SAT scores? These
are just some of the examples used in this book, An Introduction to
Statistics and Data Analysis Using Stata: From Research Design to
Final Product, second edition, to illustrate the endless number of
interesting questions that can be examined with statistics.

Drawing on our 25 years of experience in teaching data analysis to
undergraduate students and designing over 30 surveys in 17
countries, we have incorporated four essential elements in this book
that we believe are fundamental to the practice of data analysis.

1). The book provides an introduction to research design and
data collection, including questionnaire design, sample
selection, sampling weights, and data cleaning. These topics
are an important part of empirical research and provide students
with the skills to conduct their own research and evaluate
research carried out by others.

2). We frame data analysis within the research process—
identifying gaps in the literature, examining the theory,
developing research questions, designing a questionnaire or
using secondary data, analyzing the data, and writing a
research paper.

3). We emphasize the use of code or command files in Stata
rather than the point-and-click menu features of the software.
We believe that students should be taught to write programs



that document their analysis, as this allows them to reproduce
their work during follow-up analyses and to facilitate
collaborative work. We do, however, include brief instructions on
the use of Stata menus for each command.

4). The book teaches students how to describe statistical results
for technical and nontechnical audiences. Being able to explain
the results to various audiences is just as important as choosing
the correct statistical test and generating results.

Because the primary focus of this book is data analysis, we do not
provide the same depth of treatment on research methods that may
be available in other books. However, we feel that providing an
integrated approach to research methods, data analysis, and
interpretation of results is a worthwhile trade-off, particularly for
undergraduate students who might not otherwise get exposure to
research methods. We also offer resources for students who are
interested in exploring any of the topics covered in this book in
greater depth.



CHAPTER FEATURES
The literature on teaching statistics emphasizes the challenges
students face in learning how to apply statistics to solve problems,
the difficulty in understanding published results, and the inability to
communicate research results. We address these problems
throughout the book, as illustrated by these features:

1. Description of the research process

The first chapter is devoted to the steps in the research process.
These steps include choosing a general area, identifying the
gaps in the literature, examining the theory, developing a
research question, designing a questionnaire or using
secondary data, analyzing the data, and writing the research
paper. By starting with the big picture, students have a frame of
reference to guide them as they then learn in detail about these
steps in the chapters that follow.

2. Summary table at the start of each chapter that includes the
research question, hypothesis, statistical procedure, and Stata
code

Each chapter related to a statistical technique (Chapters 7–12
and 14) begins with a table that identifies the research question,
the research hypothesis, the statistical procedure needed to test
the hypothesis, the types of variables used, the assumptions of
the test, and the relevant commands in Stata. This table serves
as a quick reference guide and preview of what is to come in the
chapter. It also reinforces the ability to apply statistics to solve
problems.

3. Box with news article related to a statistical procedure

Following the summary table described previously, a portion of a
newspaper article is included to illustrate the use of the



statistical technique applied to real-world data. A brief
discussion of the news article follows along with the necessary
statistical method to test the hypothesis and a critique of
potential flaws in the research design. This is designed to help
students understand published results, judge their quality, and
again apply statistics to real-world problems.

4. Tables with real-world examples from six fields of study

Section 2 of each chapter related to a statistical concept covers
the circumstances in which that particular concept or test is
appropriate. This is done by giving examples of research
questions from six fields along with the null hypothesis and
types of variables needed for the test. This is intended to help
students identify research questions and apply statistics to solve
problems. It also illustrates that the skills related to statistical
techniques are applicable across multiple disciplines.

5. Application of statistical tests using relevant data

We illustrate the practical application of statistical methods by
employing eight data sets that captivate the interest of college
students and remain relevant to their experience:

We use data from the College Scorecard—an initiative by
the United States government designed to aid students in
comparing colleges based on factors such as
postgraduation debt and salaries six years after graduation.
This is complemented by integrating college ranking
information from the U.S. News and World Report to
examine variations in these metrics across different college
ranks.

We explore dating app dynamics using data from Ok Cupid,
which sheds light on the characteristics of individuals



engaged in online dating.

In the context of the COVID-19 pandemic, we utilize state-
level data to explore statistics concerning mask mandates,
COVID-19 cases, and the political influences shaping
decisions related to the pandemic.

We make use of the Admitted Student Questionnaire for
2014, which covers SAT scores, family incomes, and
student perspectives on the significance of various college
attributes.

The 2015–2016 Survey on Crime and Safety is used to
examine the landscape of violence and discipline in US
high schools.

We use a database of new and used cars for sale from
Cars.com to explore the factors that affect the price of
electric, hybrid, and gas-powered cars.

The issues of drug abuse and alcohol consumption are
addressed using data from the National Survey on Drug
Use and Health from 2015.

Finally, to illustrate examples and exercises throughout the
book pertaining to trends in the attitudes and behaviors of
Americans, we make use of the General Social Survey
conducted in 2021.

6. Exercises to practice techniques learned in each chapter

It is essential for students to practice data analysis on a regular
basis in order to become proficient data analysts. This book
contains more than 70 exercises that can be done in class or as
homework problems. Instructors have access to the full answer
key for each problem. In addition to the chapter exercises, we



also offer multiple choice quizzes for each chapter available as
an instructor resource online.

7. Instructions using Stata commands along with a brief description
of menus

As described earlier, the use of Stata code or command files
allows students to document their work, reproduce the results,
and collaborate with others during the research process. Menus
are also briefly illustrated for those professors who prefer to
teach with the menus in each chapter.

8. Communicating the results

In each chapter related to a statistical test, we include a section
called “Presenting the Results,” in which we illustrate how to
report the results for a nontechnical audience and for a scholarly
journal with more technical language. In addition to these
sections, the last chapter is devoted entirely to writing a
research paper.

AUDIENCE
An Introduction to Statistics and Data Analysis Using Stata: From
Research Design to Final Report is written for undergraduate
students in any course that involves data analysis. Although it would
be helpful to have some knowledge of statistics before using this
book, the book can be used as an introduction to both statistics and
Stata, a statistical software package widely used in multiple fields.
The book could also be useful in an introductory graduate course or
for researchers interested in learning Stata.

TEACHING RESOURCES



This text includes an array of instructor teaching materials designed
to save you time and to help you keep students engaged. A list of
these resources follows. To learn more, visit sagepub.com or contact
your SAGE representative at sagepub.com/findmyrep.

Access to the data sets used throughout the book

Two sets of answer keys to the chapter exercises: A full set with
all answers and output and an abbreviated set for students to
check their work as they complete the exercises.

A multiple-choice quiz for each chapter

Suggestions for managing the homework grading load

Sample tests and study guides

Project instructions for designing a questionnaire and analyzing
the data in groups, including

Data collection project instructions and timeline for a 15-
week semester

Questionnaire design using Google Forms

Instructions for pretesting group questionnaires

Data cleaning instructions

Organizing PowerPoint slides for group presentations

Data analysis instructions

Sample syllabus that includes a list of material covered in each
class when taught by the authors.



PowerPoint slides that meet accessibility standards to
accompany each chapter.

Author-created slides are available directly from the authors. To
request these slides, please contact Lisa Daniels at
LDaniels2@washcoll.edu. These slides provide more detailed
information on each slide.

Instant polls that are built into the PowerPoint slides or for use
independently outside of PowerPoint

STRUCTURE OF THE BOOK
As described previously, Part One of the book is titled “The
Research Process and Data Collection.” In Chapter 1, we offer an
overview of the research process by briefly describing the major
steps involved at each stage. We then describe primary data
collection in Chapter 2, including sampling frames, sample selection
techniques, and sampling weights. In Chapter 3, we review the
principles of questionnaire design along with ethical issues. In Part
Two of the book, “Describing Data,” we introduce Stata in Chapter 4,
discuss methods for preparing and transforming data in Chapter 5,
and cover descriptive statistics in Chapter 6. Part Three, “Testing
Hypotheses,” includes five chapters that cover the normal
distribution followed by hypothesis testing related to a single mean,
two means, analysis of variance, and the chi-square statistic. In Part
Four, “Exploring Relationships,” we cover correlation, linear
regression, regression diagnostics and some advanced regression
topics briefly. Finally, in Part Five, a chapter is devoted to writing a
research paper, including a detailed description of each section of a
research paper with a special emphasis on reporting statistical
results.

Instructors may choose to skip Chapters 2 and 3 if they prefer not to
cover sampling techniques or questionnaire design. Similarly, the



more advanced topics in Chapters 13-15 may be excluded if time is
limited or students have the option of going on to a more advanced
course where they would cover those topics in depth.

WHAT’S NEW IN THE SECOND EDITION?
The second edition of An Introduction to Statistics and Data Analysis
Using Stata: From Research Design to Final Report incorporates
fresh content, updated data sets, additional data sets, enhanced
explanations based on feedback from students and referees,
revisions to Stata code based on software changes, and the removal
of certain material. These changes are described next.

To illustrate the use of statistical concepts related to the real
world, all news articles have been updated. These include new
articles related the use of ChatGPT in college courses, COVID-
19 practices and the politics driving these practices, updated
policies related to the use of SAT scores in college admissions,
characteristics of individuals using online dating apps, and
factors that drive the price of gas-powered and electric vehicles.

New chapter exercises have been added.

Exercises with older data sets have been updated to use the
most recent version of a data set when available.

Several new sections have been added, including

A discussion of laws, theories, and hypotheses

A more complete review of the types of surveys

A section on the treatment of missing values when
generating new variables



More detail on when to use row and column percentages

A series of graphs that illustrate the p-value and the
difference between the distribution of a single variable
versus the distribution of sample means

A series of graphs that help to illustrate the standard error
of the mean and the standard error of the mean difference

A table at the end of Chapters 7 through 12 that
summarizes the null hypothesis, the test, the information
known, and the procedure

A table at the end of Chapters 7 through 12 to illustrate the
code used in each chapter and the purpose of the code

More detail about how to calculate the 95% confidence
interval and why this is becoming more important compared
to p-values

New sections in Chapters 7, 8, and 11 on testing of
proportions

A new chapter 15 on advanced methods in regression
analysis . The new chapter provides a brief introduction to
multinominal logit, instrumental variables, analysis of time-
series data, and panel data regression analysis.

Because we want to emphasize Stata code instead of menus,
all screenshots of menus to produce Stata results have been
removed. We continue to briefly discuss how to use the menus
in words by indicating what tabs and subheadings would be
needed.

When Stata updated to a more recent version, there were some
minor code changes. The Stata code has been updated



throughout the book.

In Chapter 16, which covers “Writing a Research Paper,” we
have incorporated a new journal article on the role of artificial
intelligence in higher education as a key example to illustrate
the parts of a journal article.

A new appendix has been added that describes each data set
used in the book in detail.

There are several new resources for instructors as described
previously.
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PART I THE RESEARCH PROCESS
AND DATA COLLECTION



1 A BRIEF OVERVIEW OF THE RESEARCH PROCESS



CHAPTER PREVIEW

Steps in the Research
Process

Example from Valkenburg and Schouten, “Friend
Networking Sites and Their Relationship to Adolescents’
Well-Being and Social Self-Esteem”

Step 1: Choose a
research area and read
the literature Impact of social media on self-esteem and well-being

among teens



Steps in the Research
Process

Example from Valkenburg and Schouten, “Friend
Networking Sites and Their Relationship to Adolescents’
Well-Being and Social Self-Esteem”

Step 2: Identify the gaps
or ways to extend the
literature Limited research on uses and consequences of social

media use among adolescents

Lack of distinction between social and nonsocial Internet
use

Step 3: Examine the
theory

Human beings have a desire to protect and enhance their
self-esteem.

Self-esteem is strongly related to well-being.

Step 4: Develop your
research questions and
form hypotheses Does the frequency with which teens use networking sites

have an impact on their self-esteem and well-being?

Does positive or negative feedback affect self-esteem?

Step 5: Develop your
research method

Online survey among adolescents between 10 and 19
years of age who have a profile on a social networking site

Step 6: Examine the data
or other evidence

Descriptive statistics of frequency of usage and types of
feedback received from peers

Regression analysis to determine impact on self-esteem



Steps in the Research
Process

Example from Valkenburg and Schouten, “Friend
Networking Sites and Their Relationship to Adolescents’
Well-Being and Social Self-Esteem”

Step 7: Write the
research paper

Introduction

Literature Review

Data and Methods

Results

Discussion

Conclusion

Source of example in the second column: Valkenburg, Peter, and Schouten (2006).

1.1 INTRODUCTION
Does the use of ChatGPT to practice homework problems improve scores? Were mask mandates
motivated by politics during the COVID-19 pandemic? Do education levels vary by gender identity
among those who use online dating applications? Do students from high-income families earn higher
SAT scores? These are just some of the examples used in this book to illustrate the endless number of
interesting questions that can be examined with statistics.

Although the majority of this book is focused on statistics, it is important to understand where and how
data analysis plays a role in the research process. We begin, therefore, by giving you a brief overview
of the research process. This includes choosing a research area, identifying gaps in the literature,
examining the theory, developing research questions and hypotheses, identifying your research method,
analyzing data, and writing the research paper. Although this is a brief overview, some of these topics
are covered in greater detail later in the book. In particular, Chapter 16 on “Writing the Research Paper,”
offers guidance and examples from published papers for each section of a research paper, including
how to structure a literature review, examine the theory, describe your data and methods, report
statistical results, discuss your results within the context of the literature and theory, and offer your final
conclusions, limitations, and areas for future research.

1.2 WHAT IS RESEARCH
Research is often described as the creation of knowledge. It begins with the construction of an
argument that can be supported by evidence. As described by Greenlaw (2009), scholars then create a
“conversation” in scholarly journals to discuss the argument. In many cases, scholars will identify gaps
in the argument and offer alternate views or evidence. In other cases, scholars may forward or extend
the argument by offering new insights or examine the same argument from a different angle. Another
equally valid form of research is to replicate what others have done. This can be done by conducting the
same research in a different region, in a different time period, over a longer time period, or with a
different set of participants. All of these may validate the original argument or disprove it.

1.3 STEPS IN THE RESEARCH PROCESS



1.3.1 Read the Literature and Identify Gaps or Ways to Extend the
Literature
When starting a new research project, it is common to begin by choosing a general area, such as
poverty, pollution, sports, social media, criminal justice, and so on. Before identifying a research
question within the general area, you must begin reading the literature. The literature can be defined as
a body of articles and books, written by experts and scholars, that has been peer reviewed. A peer
review is when two or three scholars are asked to anonymously evaluate a manuscript’s suitability for
publication and either reject it or accept it, typically with revisions based on their recommendations.1
Articles in the body of literature will cite other sources and will be written for an audience of fellow
scholars. Nonscholarly materials, such as newspapers, trade and professional sources, letters to the
editor, and opinion-based articles are not considered part of the literature. They are sometimes used in
scholarly papers, but never as a sole source of information.

Most disciplines have their own databases, with articles, book chapters, dissertations, and working
papers from their field. Table 1.1 shows a list of the key databases in several fields.



Field Database Content WebsiteField Database Content Website
Criminal
Justice ProQuest

Criminal
Justice
Database

A comprehensive
database of U.S.
and international
criminal justice
journals

www.proquest.com/products-
services/pqcriminaljustice.html

Criminal
Justice
Abstracts

Titles and abstracts
for articles from
most significant
sources in the field

www.ebsco.com/products/research-databases/criminal-
justice-abstracts

Economics Econ Lit Over 2,000
journals, plus
books,
dissertations,
working papers,
and book reviews

www.aeaweb.org/econlit

Political
Science

JSTOR 6,800 political
science journals,
books, and
pamphlets

www.jstor.org/action/showJournals?discipline=43693417

Academic

Search
Complete

340 full-text political
science reference
books and
monographs and
more than 44,000
full-text conference
papers

www.ebscohost.com/academic/subjects/category/politic
science

Psychology PsycINFO Four million
bibliographic
records, including
more than 2 million
digital object
identifiers to allow
for direct linking to
full-text psychology
articles and
literature. Indexing
of more than 2,500
scholarly
psychology journals

www.apa.org/psycinfo

Public
Health

PubMed Access to 12
million Medline
citations dating
back to the 1950s

www.ncbi.nlm.nih.gov/pubmed

PAIS Political, social, and
public policy issues

www.proquest.com

Nexis Uni 15,000 news,
business, and legal
sources

www.lexisnexis.com



Field Database Content Website
Sociology Sociological

Abstracts
Abstracts of
sociology journal
articles and
citations to book
reviews drawn from
more than 1,800
serial publications
and abstracts of
books, book
chapters,
dissertations, and
conference papers

http://proquest.libguides.com/SocAbs

JSTOR 8,000 sociology
journals, books,
and pamphlets

www.jstor.org/action/showJournals?discipline=43693423

Academic
Search
Complete

900 full-text
sociology journals,
abstracts for more
than 1,500 “core”
coverage journals,
data from nearly
420 “priority”
coverage journals
and more than
2,900 “selective”
coverage journals,
and indexing for
books/monographs,
conference papers,
and other
nonperiodicals

www.ebscohost.com/academic/socindex

In all of these databases, you can type in keywords from areas that interest you. You can then peruse
article titles and read abstracts to get a sense of the thought-provoking questions and research in your
area of interest. Once you have found some key articles that zero in on your research interests, you can
review earlier articles that were referenced by the key articles (backward citation searching) and search
forward in time to see what other articles have cited your key articles since they were written. For
example, if an article was written in 1995, you can find every article written since 1995 that has cited the
original article. This can be done through Google Scholar, PubMed, Science Direct, Scopus, and Web of
Science. As you find more articles related to your specific topic, you will find that the literature will
indicate what has been done in your area of interest, what questions remain, and if there are gaps or
contradictions in the literature. All articles will also indicate the flaws in their own research and areas for
future research. You can then identify your own research questions based on the contradictions or gaps
in the literature or the need for forwarding or extending the argument. As mentioned earlier, you can
also replicate what other authors have done by repeating the same study based on a different time
period, a different region or country, or a different set of data.

For more information on how to identify gaps in the literature and write a literature review, refer to
Chapter 16, “Writing a Research Paper,” which offers guidelines on each section of a research paper
along with examples from journal articles to illustrate these concepts.



1.3.2 Examine the Theory
A theory can be defined as a comprehensive explanation that is supported by a large body of evidence.
For example, the theory of comparative advantage used by economists suggests that countries will
specialize in producing a good in which they have a lower opportunity cost and trade with each other to
benefit from mutual gains. Another example is Darwin’s theory of evolution, which is used to explain
changes in species over time.

Theories are different from hypotheses and laws. A hypothesis is a testable prediction. For example,
you could test the hypothesis that increased exposure to sunlight will lead to higher levels of vitamin D
in the body. Unlike theories and hypotheses, which can be updated based on new evidence, a law
describes a universal and consistent relationship between two or more variables. For example, the law
of demand states that as the price of a good increases, the quantity demanded will decrease, holding all
other factors constant.

Theory plays an important role in developing your research questions and hypotheses. In the article
used in the chapter preview, for example, Valkenburg et al. (2006) cite the theory that humans have a
desire to protect their self-esteem and that self-esteem affects well-being. From this basic theory, they
develop their research question related to how social media usage affects self-esteem and thus well-
being.

As a second example, the theory of social capital could be used to develop research questions. This
theory suggests that individuals benefit from social networks that can offer emotional support, access to
resources, and opportunities. Although this theory was first developed within the field of sociology, many
fields use the theory of social capital including economics, public health, political science, and
education. Using social capital theory as our framework, we could ask how social media usage
contributes to the formation of social capital among college students and if this social capital impacts
their performance. Our hypothesis could be that social capital leads to better academic performance.

Although theory offers a framework to help develop hypotheses, we also return to the theory when
examining the results of our study. In other words, do your results conform to the stated theories? How
do they differ? Why might they differ? These concepts are covered in more detail in Chapter 16, “Writing
a Research Paper.”

1.3.3 Develop your Research Questions and Hypotheses
As described in the previous sections, you begin to form your research questions as you read the
literature and examine the theory. Your questions may change in the early stages of the research as you
continue to find more articles on the topic or new ways that scholars have examined or answered the
questions in your research area.

In the example used in the chapter preview, the authors identify two research questions that are
illustrated in Figure 1.1. Each of these questions can then be restated as a hypothesis, or an answer to
the questions. As you begin your research, you won’t know the answer to your research questions, but
your hypotheses indicate what you expect to find based on theory. Your research may then find
evidence to support or refute your hypothesis, which is a key feature of a hypothesis. It must be
testable.



Description

Figure 1.1 From Research Question To Hypothesis

Developing the research questions is often the most difficult part of the research process and requires a
lot of work up front before the questionnaire or study design can or should begin.

In addition to identifying the research question, it is also important to begin thinking about your key
variables (self-esteem, social media usage, and feedback, in this case) and how they relate to one
another. In particular, self-esteem is the dependent variable because its value depends on the two
independent variables: social media usage and feedback received. A dependent variable is defined in
general as a variable whose variation is influenced by other variables. This is covered in more detail in
later chapters.

1.3.4 Identify your Research Method
Once you have identified your research questions, your next step is to develop your research method.
There are many types of research methods, such as qualitative research (narrative research, case
studies, ethnographies), quantitative research (surveys and experiments with statistical analysis), and
mixed methods that include both qualitative and quantitative approaches. Since this textbook focuses on
quantitative analysis of primary data (data collected by the researcher) and secondary data (data
collected by someone else), the remaining chapters in this book will be devoted to sampling,
questionnaire design, and data analysis, with a final chapter on writing a research paper. For more
complete works on the other types of research methods mentioned, see Leedy and Ormrod (2001) or
Creswell and Creswell (2018).

1.3.5 Examine the Data or Other Evidence
As described above, the majority of the remainder of this book covers data analysis. This begins in
Chapter 6 with descriptive statistics, such as the mean, median, and standard deviation. We then
cover testing of hypotheses and exploring relationships through advanced statistical techniques. These
include testing a hypothesis about a single mean, two independent means, one-way analysis of
variance, chi-squared tests, linear regression, and an overview of some more advanced statistical
methods. These will be discussed in detail in Chapters 6 through 15.2

1.3.6 Write the Research Paper



Once all steps of the research process are completed, you may begin to write your research paper. The
typical sections in a research paper are the introduction, the literature review, the method section, the
results, a discussion, and the conclusions. Each of these sections is described in Chapter 16 along with
examples from published articles. We also review conventional guidelines and style guidelines for
reporting statistical results.

1.4 CONCLUSION
This chapter is meant to provide a very brief overview of the research process and where data fits into
this process. As mentioned in the “Research Method” section, both primary data and secondary data
can be used. Primary data is often used in fields such as sociology, psychology, medicine, and
marketing through surveys, experiments, interviews, and observations. Secondary data is common in
fields like economics, history, and public policy, where studies employ data from government reports,
historical records, or databases. Because both sources of data are important, this book offers examples
of each along with chapters that focus on primary data (Chapter 2: Sampling Techniques, Chapter 3:
Questionnaire Design, and Chapter 5: Preparing and Transforming Your Data). In Chapter 4, we also
offer an example of entering data directly into Stata so that you can better understand the elements of a
data set. In other chapters, secondary data sources such as the General Social Survey, the College
Scorecard, the National Survey on Drug Use and Health, the OkCupid mobile dating app data, and
COVID-19 state-level data are used to generate descriptive statistics and test hypotheses.

In conclusion, this chapter sets the stage for understanding the research process and the role of data
analysis, preparing you to effectively utilize both primary and secondary sources in your own research
endeavors.

EXERCISES
1. Read the article “Prevalence and Motives for Illicit Use of Prescription Stimulants in an

Undergraduate Sample” by Teter, McCabe, Cranford, Boyd, and Guthrie (2005). As you read the
article, answer the following questions, which are based on guidelines offered by Greenlaw (2009).

a. What question or questions are the authors asking?
b. Describe the theoretical approach that the authors use to develop their research question.
c. What answers do the authors propose?
d. In what ways does the current study improve over previous research, according to the authors

of the article? In other words, what gaps do the authors identify in the current literature?
e. What method do the authors use to answer their questions?
f. What limitations do the authors identify in their study?

g. What suggestions do the authors have for follow-up research that should be done?
2. Choose a general area of research that interests you. This could be sports, cancer, poverty, social

media usage, gaming, and so on. Use the techniques identified in Section 1.2 to narrow your focus
as you begin perusing the literature and using forward and backward searching for articles of
particular interest to you. Once you have done the initial reading, you should develop a tentative
research question and identify five articles that are most closely related to your question. For each
of the five articles, answer the following questions:

a. What question or questions are the authors asking?
b. Describe the theoretical approach that the authors use to develop their research question.
c. What is the hypothesis that the authors propose?
d. What answers do the authors propose?
e. In what ways does the current study improve over previous research according to the authors

of the article? In other words, what gaps do the authors identify in the current literature?
f. What method do the authors use to answer their questions?

g. What limitations do the authors identify in their study?



h. What suggestions do the authors have for follow-up research that should be done?

KEY TERMS

data analysis

dependent variable

descriptive statistics

linear regression

literature

mean

median

questionnaire

statistics
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The research questions are “Does the frequent use of social media have an impact on self-esteem?”,
and “Does peer feedback have an impact on self-esteem?” The hypothesis for these are “Frequent use
of social media will have a negative impact on self-esteem.”, and “Positive feedback will elevate self-
esteem, while negative feedback will damage self-esteem.”



2 SAMPLING TECHNIQUES



CHAPTER PREVIEW

Terms Definitions
Unit of
observation

Type of entity being studied, such as individuals, households, or
businesses

Population The complete set of units that is the topic of a study
Sample A subset of the population, intended to represent the population, from

which data will be collected
Nonprobability
sampling

Selection of units based on the discretion of researchers, which means that
it is not possible to calculate the probability of selecting each unit

Probability
sampling

Selection of units using random numbers, such that it is possible to
calculate the probability of selecting each unit

Simple
random
sample

A sample in which each unit in the population has the same probability of
selection

Systematic
random
sample

A sample in which the selected units are at constant intervals evenly
spaced in a list of the units across the population

Multilevel
sampling

A sample in which aggregated units (e.g., towns) are selected, followed by
the selection of more disaggregated units (e.g., households)

Stratification Division of the population into different groups, each of which may be
sampled differently



Terms Definitions
Sampling
weights

Weights used to calculate population averages in a way that compensates
for the effect of the sampling method

2.1 INTRODUCTION
Primary data refer to data collected directly by the researchers. This contrasts with secondary data,
which are data collected by another researcher or an organization, such as a government agency. In the
social sciences, primary data are often collected through a sample survey, where the researcher
interviews (or hires others to interview) a subset of the population on a topic of interest. The quality of
the data depends heavily on selecting a good sample and asking the right questions. This was
dramatically illustrated by the polling for the 1936 U.S. presidential elections.

As described by the National Constitutional Center in Philadelphia, The Literary Digest had run polls in
four previous elections, successfully predicting the winner in each. In 1936, they carried out a poll of two
million voters and predicted that the Republican candidate Alf Landon would beat Franklin Roosevelt,
the Democratic candidate. In fact, Roosevelt won in a landslide, beating Landon in 46 of 48 states. On
the other hand, George Gallup used a random sample of just 50,000 voters and correctly predicted that
Roosevelt would win (see Figure 2.1).

Description

Figure 2.1 Article

NCC (National Constitution Center). 2012. “The five biggest polling mistakes in U.S. history.” National Constitutional
Center, Philadelphia. https://news.yahoo.com/news/five-biggest-political-polling-mistakes-u-history-132611721.html

The problem was that The Literary Digest relied on lists of “magazine readers, car owners, and
telephone subscribers.” During the Great Depression, these lists had a disproportionate number of high-
income households who opposed Roosevelt and his New Deal policies. In addition, The Literary Digest
conducted the poll by sending postcards to 10 million voters and relying on respondents to mail back



their responses. The response rate was higher among Republicans than Democrats, which also
contributed to the incorrect result (Squire, 1988).

The Literary Digest was discredited by this high-profile failure and closed soon after. The success of
Gallup’s prediction established the national reputation of his firm, which grew to become one of the
largest political polling companies. It also catalyzed the development of modern random-sample polling.
The lesson for sampling methods is that it is much more important to have a representative sample than
to have a large sample. In addition, this experience highlights the fact that a low response rate can
distort the results of a survey. Magazine subscriber polls and online polls are not considered scientific or
reliable, no matter how many people respond to them.

This chapter introduces the basic concepts of sampling, discusses some of the more common sampling
methods, and explains the calculation and use of sampling weights. However, it only scratches the
surface of a large and complex topic. Readers interested in a more in-depth treatment of sampling
methods may wish to consult Rea and Parker (2005), Scheaffer, Mendenhall, Ott, and Gerow (2011), or
Daniel (2011).

2.2 SAMPLE DESIGN
As discussed in the previous chapter, any research must begin with careful consideration of the
objectives of the study. What are the research questions? What information is needed to answer those
questions? What is the unit of observation, defined as the type of entity about which the study will
collect information? In social science research, the unit of observation is often individuals, households,
businesses, or other social institutions. Table 2.1 gives four examples of units of observation, depending
on the research question and information needed.



 Example 1 Example 2 Example 3 Example 4
Research
question

Which political
candidate is favored
by voters?

What is the average
yield of rice farmers?

Why do students
transfer from one
university to another?

How do
regulations
affect small
businesses?

Information
needed

The opinions of voters
regarding each
candidate

The rice production
and area under rice
cultivation among
rice farmers

The reasons that
students give for
wanting to transfer
out

The cost of
complying with
a set of
business
regulations

Unit of
observation

Voters Rice farmers Students Small
businesses

Population All likely voters in the
country, defined as
those who voted in at
least two of the past
three elections

All rice farmers in a
country, defined as
those growing rice in
the previous year

All full-time
undergraduate
students at the
university in a year

All businesses
in the state that
have 10 or
fewer full-time
workers

Sample 1,500 likely voters 2,000 rice farmers 200 students 5,000 small
businesses



 Example 1 Example 2 Example 3 Example 4
Description
of survey

A polling firm collects
information from
1,500 likely voters
about their political
views

A statistical agency
gathers information
from 2,000 rice
farmers to estimate
the average yield

A university carries
out a survey of 200
students to gather
information on
reasons for
transferring

A state agency
carries out a
survey of 5,000
small
businesses in a
state

In statistics, the population is the complete set of individuals, households, businesses, or other units
that is the subject of the study. Table 2.1 gives some examples of populations corresponding to the
studies listed. Note that each population is defined in terms of the type of unit of observation, the
geographic scope, and the period of time.

The sample is a subset of the population consisting of units from which data will be collected. Sampling
is the process of selecting the sample in a way that ensures it will be representative of the population.
One option, of course, is to collect data from every unit in the population—that is, to carry out a census.
This might be feasible if the population is defined narrowly or if the budget is very large. For example, if
the population is defined as all the banks in a given town, it would probably be feasible to carry out a
census. Alternatively, the governments of many countries carry out a population census every 10 years.
But for most purposes, it is more cost-effective to conduct a sample survey, defined as systematic
collection of data from a limited number of units (e.g., households) to learn something about the
population. Using the previous four examples, Table 2.1 provides a possible sample for each.

All surveys face a trade-off between the objectives of reducing cost and increasing accuracy. If cost
were no object, then one could carry out a census (covering all units), and it would not be necessary to
worry about whether the selected units were representative of the whole group. Alternatively, if accuracy
were not a concern, one could just sample a handful of units in one location, which would minimize
costs. In practice, most surveys are in between these two extremes. A key challenge is to ensure that
the sample is selected in a way that accurately reflects the characteristics of the whole group.

2.3 SELECTING A SAMPLE

2.3.1 Probability and Nonprobability Sampling
How does the researcher select a sample for the survey? One intuitive approach is for the researcher to
simply choose a set of units based on availability or subjective judgment. This is called nonprobability
sampling because it is not possible to calculate the probability of selecting each unit. Below is a partial
list of some of the various types of nonprobability sampling:

Convenience sampling involves selecting units from available but partial lists or selecting people
who are passing by a location, such as a supermarket.

Purposive sampling means that the researcher uses knowledge of the field to select units to be
studied.

Snowball sampling refers to picking an initial set of units, then a second round of units that are
nearby or have links to the first-round selections. There may be additional rounds.

Nonprobability sampling has the advantage of being quick and inexpensive to implement. It is often
used with qualitative research focused on in-depth exploration of a topic on a relatively small number of
observations. Qualitative research can complement quantitative surveys in several ways. It can be



carried out before a random-sample survey to identify key issues, contributing to the design of the
questionnaire. Or it can be conducted after a survey to help interpret the results or explain unexpected
findings. For an in-depth discussion of qualitative research and mixed methods that combine qualitative
and quantitative research, see Creswell and Creswell (2017).

The main disadvantage of nonprobability samples is that they are likely to be biased, meaning that the
sampled units do not accurately reflect the characteristics of the population. (The 1936 polling by The
Literary Digest is an example.) For this reason, it is not possible to infer characteristics of the population
from the characteristics of the sample. For example, a nonprobability sample of businesses will probably
include mostly large, well-known businesses—those that have more visible locations and those that
advertise. Car dealers, supermarkets, and restaurants will probably be overrepresented, while shoe
repair shops, cleaning services, and home-based day care providers are likely to be underrepresented
or excluded.

For these reasons, almost all larger surveys carried out by researchers and professional polling
companies use probability sampling, defined as sampling in which the selection is made randomly from
a complete list of units. (Indeed, it is also known as random sampling.) The researcher defines the
population and the selection method but does not have any discretion in deciding which individual units
will be included in the sample.

If a random sample is well-designed and large enough, it will be representative of the population. In
other words, the characteristics of the sample will be similar to the characteristics of the population. In
the example above, the average size of businesses in the sample will be similar to the average size of
businesses in the town. In technical terms, the average business size in the sample will be an unbiased
estimate of the business size in the population. This means that if you took repeated samples using the
same method, the average across samples would converge toward the population average as the
number of samples increased.

Another advantage of a random sample is that we can estimate the sampling error of our sample-based
averages—that is, the error associated with selecting a sample rather than collecting data from every
unit in the population. As described in more detail in Chapter 8, the sampling error of a variable is based
on (a) the size of the sample, (b) how it was selected, and (c) the variability of the variable in question. If
the sample is large or the variability is low, the sample error is likely to be small. One way to describe
the sampling error is the 95% confidence interval, defined such that there is a 95% probability that the
true average lies between the two numbers. If a political poll reveals that 45% of voters approve of a
state governor with a margin of error of 3 percentage points, this means that the 95% confidence
interval is 45% ± 3 percentage points or 42% to 48%. In other words, there is a 95% probability that this
confidence interval contains the true level of approval (if you polled every voter in the state). This topic is
discussed in more detail in Chapter 7.

Note that a sample does not have to represent a large percentage of the population to be precise. In
national political polls, a sample of 800 to 1,200 is usually sufficient to reduce the margin of error to less
than 5 percentage points, in spite of the fact that the sample is roughly 0.001% (or 1 in 100,000) of the
total voting population in the United States. It is also useful to note that these calculations count only
sampling error. They do not include other sources of error, such as respondents who give false answers
or pollsters misidentifying who will decide to vote.

In a large majority of surveys, it is worth the additional effort to select the units randomly. The remainder
of this section describes the methods used for different types of random sampling.

2.3.2 Identifying a Sampling Frame
To select a random sample, a researcher needs a sampling frame—that is, a list of sampling units in the
population from the sample is selected. Ideally, the sampling frame would be a complete list of the units



in the population, but this is not always possible. Sometimes an available list is smaller than the target
population. For example, a researcher may wish to define the population as all rice farmers in a region,
but the available list may include only members of a cooperative of rice farmers, thus excluding rice
farmers who are not members. It is important to either complement the list with additional sampling to
capture information on nonmembers or recognize this gap in describing and interpreting the results.

Other times, an available list may include more units than the target population. For example, suppose
you want to survey likely voters, but the only information available is a list of registered voters, including
some who rarely vote. In this case, one option is to contact all voters, ask each respondent if they voted
in two of the past three elections, and proceed with the interview only if the answer is yes. Alternatively,
the researcher could collect voting patterns and opinions from all registered voters and then examine
the patterns for different definitions of likely voter in the analysis.

In some situations, no sampling frame is available. This is particularly common when the sampling unit
is a specific type of household or business. For example, if a researcher wants to conduct a survey of
bicycle repair shops, fortune tellers, or beekeepers in a place where these businesses are not
registered, it may not be possible to obtain a complete list to serve as a sampling frame, even at the
local level. In such a situation, the researcher must create a sampling frame.

One approach is to use area sampling. The researcher obtains a set of maps of local areas, such as
counties or urban neighborhoods. Using maps of each area, the researcher divides it into smaller units
of similar size. One common approach is to use a grid to divide the map into equal-sized squares.
Another option (relevant for urban surveys) is to use city blocks as the smaller unit. In either case, the
researcher selects a sample of the smaller units and then collects information from all the sampling units
within the selected unit. For example, to implement a survey of small-scale food shops, the city is
divided into 80 neighborhoods using a map, and 20 neighborhoods are selected. Each selected
neighborhood is divided into blocks using a street map. The survey team then visits a randomly selected
set of eight blocks in each neighborhood. Within each block, every small-scale food retailer is
interviewed.

In the absence of maps and a sampling frame, it may be necessary to carry out a listing exercise, in
which the survey team first prepares a list of the sampling units within a given area. The sampling units
are then numbered, and a random selection is made for follow-up interviews. This can be a time-
consuming process, so it is useful to define the area as small as possible given the information
available.

2.3.3 Determining the Sample Size
How large should a survey sample be? Not surprisingly, it depends. To explain the factors that
determine the minimum sample size, it is helpful to use an example. Suppose we are designing a survey
to test whether there is a gender difference in the salaries of recent graduates from a college. Would it
be enough to interview 70 graduates, or do we need a sample of 700? To answer this question, we need
five pieces of information:

1. How small a difference in salaries do we want to be able to measure? In our example, if we want to
detect a male–female salary difference as small as 3%, the sample size will have to be relatively
large. If, on the other hand, we are satisfied with only being able to detect salary differences that
are 20% or more, a smaller sample will suffice.

2. How much variation is there in salaries? If all the graduates have similar salaries, then we can
estimate the mean (average) salary of men and women more precisely, so a small sample would be
sufficient. If, on the other hand, there is a wide variation in salaries, then we would need a larger
sample to achieve the same level of precision in the estimate.

3. How small do we want to make the probability of incorrectly concluding that there is a difference
between the salaries of men and women? The larger the sample size, the smaller the risk of making



this type of error.
4. How small do we want to make the probability of incorrectly concluding that there is no difference

between the salaries of men and women? Again, the larger the sample, the lower the risk.
5. How was the sample selected? The sample design influences the size of sample needed to reach a

given level of precision.

If we have information (or at least educated assumptions) about these five factors, we can estimate the
number of graduates that need to be interviewed in the survey. We will not describe the methods here
because they make use of concepts taught in later chapters. However, a brief survey of the methods
can be found in Appendix 9.

2.3.4 Sample Selection Methods
This section describes four types of sampling methods: (1) simple random sampling, (2) systematic
random sampling, (3) multistage (or cluster) sampling, and (4) stratified random sampling. The Stata
code to implement each of these methods is shown in Appendix 7, though it requires a solid
understanding of Stata. We recommend studying Chapters 4 to 7 before reading Appendix 7.

2.3.4.1 Simple Random Sampling

Once we have the sampling frame, how do we select the sample? One approach is to select a simple
random sample, in which the entire sample is based on a draw from the sampling frame, where each
sampling unit has an equal probability of being selected. The probability of selecting each unit is n/N,
where n is the number of units to be selected and N is the total number of units in the sampling frame.
One disadvantage of a simple random sample is that the selected units may be “clumped” together in
the sample frame, resulting in a sample that is less representative than desired. To address this
problem, researchers are more likely to use a systematic random sample, as discussed next.

2.3.4.2 Systematic Random Sampling

A systematic random sample is one in which there is a fixed interval between selected units. First, a
unit is randomly selected from among the first N/n units in the sampling frame. Subsequently, units are
selected every N/n units. For example, a systematic random sample of 20 households from a list of 200
households starts with a randomly selected unit from the first N/n = 10 units. Suppose the random
selection picks unit 4. After that, we select every N/n = 10 units, that is 14, 24, 34, and so on up to 194.
The main advantage is that it spreads out the selected units evenly across the sampling frame. If the
sampling frame does not follow any order, this will not make a difference. But typically, the sampling
frame is sorted by some characteristic, such as location or size. In this case, a systematic random
sample will ensure that the selected units are balanced in terms of that characteristic. For example, if
the sampling frame is sorted by location from north to south, then a simple random sample might include
a disproportionate number of units in the north. However, a systematic random sample spreads out the
sample so that the number of selected units in the north and south will be proportional to the actual
number of units in the north and south.

2.3.4.3 Multistage Sampling

Multistage sampling refers to a selection process in which the selection occurs in two or more steps.
(This is also called cluster sampling.) For example, suppose we are carrying out a national survey. The
researcher may randomly select 10 of the 50 states, 5 counties in each state, and 100 households in
each county, for a total sample of 5,000 households. This represents a three-stage random sample,
corresponding to the three levels of selection: states, counties, and households.

There are several possible motivations for multistage sampling:



First, it may be used to overcome limitations on the availability of a full sampling frame. Often, it is
not possible to use single-stage sampling because there is no sampling frame that covers the entire
population of interest. In the case above, suppose the household lists are available only from
county officials. It would be very expensive and time-consuming to gather lists from every county in
the country to prepare a national sampling frame for a simple random sample. In contrast, it would
be much easier to randomly select a subset of counties in the first and second stages and then get
the list for each selected county for third-stage selection of households.

Second, it may be used to ensure that the sample is well distributed across certain categories. In
the example above, the design ensures that the sample includes 10 states and 5 counties within
each state.

Third, multistage sampling may be used to reduce the cost of data collection. Even if a national
sampling frame is available, visiting 5,000 randomly selected households would be much more
costly than visiting households in 50 counties.

2.3.4.4 Stratified Random Sampling

Stratification refers to dividing the population into categories (or strata) and specifying the sample size
for each one rather than allowing the distribution to be determined by chance. The strata must not
overlap each other, and they must cover the entire population. For example, national household surveys
are often stratified into rural and urban areas, with a separate selection of households in each area.
National surveys may be stratified by region as well. Surveys of enterprises are often stratified by size,
specifying the number of small, medium, and large firms that will be included.

There are three reasons to design a stratified sample. First, stratification may be used to ensure that the
sample for each stratum is large enough to allow reliable estimates at the stratum level. For example,
suppose a country has six administrative regions, but one of them only has 2% of the national
population. In an unstratified random sample of 1,200 households, roughly 2% of the sample (24
households) would be selected from the small region. If the sample is stratified by region, the researcher
can ensure that each region has 200 households, which may be enough to generate reliable results for
each region. In this case, stratification would be used to oversample the small region, meaning that the
percentage of households sampled in the small region is larger than its share in the overall population.
The other five regions would be undersampled in this process.

Second, stratification can be used to ensure that each stratum is proportionally represented in the
sample. In this sense, stratification fulfills the same function as systematic sampling where the sampling
frame is organized by stratum. If the strata are internally more homogeneous than the population,
stratification will improve the precision of estimates when compared with a simple random sample.

A third reason for stratification is to adapt to differences in the variability of key indicators across strata.
As discussed earlier and as we will discuss in Chapter 8, the precision of survey-based estimates in
measuring a variable of interest is partly determined by the variability of the variable of interest. (In the
extreme, if there were no variability and all units were the same, a sample of one would be sufficient!)
For example, suppose a survey is designed to estimate national income. In general, the variability of
income is greater in urban areas than in rural areas. Because of this, it is useful to oversample urban
households, meaning that we select a larger share of urban households than rural households. Well-
designed stratification can reduce the confidence interval in survey-based estimates without increasing
the overall size of the sample.

2.4 SAMPLING WEIGHTS



Sampling weights are numbers used to estimate population parameters (e.g., means and percentages)
from sample statistics, compensating for “distortions” that may be introduced by sampling. For example,
suppose 90% of the population lives in rural areas, but the sample is stratified so that it is 50% urban
and 50% rural. In this case, the average income in the sample will be disproportionately affected by
urban households. If urban incomes are higher, the average income for the sample will be higher than
the average income of the population. In other words, the average income from the sample is biased
upward because it has a disproportionately large number of urban households. Using sampling weights,
however, we can calculate the weighted average, which will give greater weight to each rural household
and lesser weight to each urban household, providing an unbiased estimate of the average income
among the population.

2.4.1 Calculating Sampling Weights
Sampling weights are calculated as the inverse of the probability of selection. They can also be
interpreted as the number of units in the population that each unit in the sample represents.

In the case of simple random sampling or one-stage systematic random sampling, the probability of
selecting any one unit is n/N, where n is the size of the sample and N is the size of the population. Thus,
the sampling weight (w) is calculated as the inverse:

(2.1)

w =

N

n

Note that the sampling weight is the same for all units. Such a sample is considered self-weighted
because the sample average is equal to the weighted average and represents an unbiased estimate of
the population average. In this case, the main use of sampling weights is to extrapolate from sample
totals to population totals. For example, suppose a survey of seniors at a university collects information
on 100 out of 2,000 seniors. The weight is 2,000/100 = 20, so each senior in the sample represents 20
in the senior class. The average spending on books in the sample is an unbiased estimate of the
average spending in the population. But if you wanted to estimate the total spending on books by the
senior class, you would just multiply the total for the sample by 20.

In the case of a single-stage stratified sample, we carry out the calculation for each stratum. The weight
for stratum i (wi) is calculated as follows:
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where Ni is the population of stratum i and ni is the sample size for stratum i. Taking the example of
urban–rural stratification, suppose there are 900,000 rural households and 100,000 urban households in
the population, and the sample contains 4,000 households divided equally between urban and rural
areas. The weight for rural households would be 900,000/2,000 = 450, and the weight for urban
households would be 100,000/2,000 = 50. In other words, each rural household in the sample
represents 450 households in the rural population, while each urban household in the sample stands for
just 50 in the urban population. Calculating weighted averages would give more weight to rural
households in the sample, thus compensating for the fact that they were undersampled in the survey.

For multistage sampling designs, the calculation of the sampling weights is a little more complicated, but
it follows the same general rule: the sampling weight at each stage is the inverse of the probability of
selection. There is a separate ratio for each stage in the sampling. Consider the example of a three-
stage random sample:

In the first stage, we select 10 of the 50 states.

In the second stage, we select 5 counties in each of the 10 selected states.

In the third stage, we select 100 households in each selected county.

The sampling weight for each county (wc) is the product of three ratios, each representing the inverse of
the probability of selection in that stage of selection:
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where 50 is the total number of states, 10 is the number of states selected, Cs is the total number of
counties in state s, 5 is the number of counties selected in each state, Hc is the total number of
households in county c, and 100 is the number of households selected in each county.

This equation can be adapted to other multistage sample designs, keeping in mind the fact that the
number of terms should be equal to the number of stages in the sampling. A simple way to double-
check the calculation of the sample weights is to sum the sample weights over the units in the sample.
The total should be roughly equal to the number of units in the population.

Up to this point, we have been discussing a type of weight called inverse probability sampling weights
(IPSW). The other type of weight is relative sampling weights, defined as the IPSW for each unit divided
by the average IPSW. As such, the average value of relative weights is always 1.0. For estimating
weighted means and percentages of the population, relative weights and IPSW give the same results.
However, relative weights cannot be used to estimate population totals, while IPSW can be used for this
purpose.

2.4.2 Using Sampling Weights
How are the sampling weights used? Suppose our variable of interest in a national survey is household
income. We can estimate national income as a weighted sum of household income across the sample
using the following equation:

(2.4)
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where X is the estimate of the total for the population (e.g., national income), xi is the value of the
variable for household i (e.g., household income), and wi is the IPSW for household i. As a reminder, ∑
is the summation sign, so the right side of the equation means that we should take the sum of xiwi, as i
goes from 1 to n. In other words, X = x1w1 + x2w2 + x3w3 +…+ xnwn.

Estimates of population means can be calculated as the weighted average:

(2.5)
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The numerator is an estimate of the sum of x across the population, as shown in Equation 2.4. The
denominator is the sum of the weights across the sample, which is an estimate of the total size of the
population. Thus, the overall expression is an estimate of the average value of x across the population.

If xi is a binary variable taking values of 0 or 1, then this equation gives an estimate of the proportion of
the population for which xi = 1. In the case of categorical variables, such as region or marital status, the
average has no meaning, but the variable can be broken up into a set of binary variables, one for each
category. Equation 2.5 can be used to estimate the proportion of the population in each category.

However, statistical packages, such as Stata, will do these calculations for us. In Chapter 6, we show
how sampling weights can be used to adjust the calculations of totals, means, and percentages in Stata.

EXERCISES
1. Suppose you have a sampling frame of 1,200 hardware stores in a state, numbered from 1 to

1,200. Describe how you would select a systematic random sample of 100 stores for a survey. Give
an example of what the sample might look like, showing the store numbers of the first five selected
stores.

2. Give three possible reasons why one might want to use a multistage random sample rather than a
single-stage random sample.

3. Describe the general circumstances under which it would be useful to apply area sampling to select
units to interview. Give an example of a situation in which area sampling would be useful.



4. You have been hired to design a survey of political opinions in 10 swing states, but you need to
have a large enough sample (say, 800 respondents per state) to generate reliable results for each
state. What type of sampling method do you need to use?

5. Assuming you have a list of all households in each state and can use simple random sampling in
each, how would you calculate the sampling weight for each household in the survey?

6. There are 20,000 people in the country of Wakanda. Most of the population (i.e., 17,500) live in
urban areas and the rest live in rural areas. If you drew a stratified sample of 250 people from urban
areas and 250 people from rural areas, what would be the sampling weights for urban and rural
areas?

7. Suppose that we develop a multistage sampling design and choose five states (out of 50), three
counties within each state, and 300 households in each county. In the state of Pennsylvania, where
there are 67 counties, we randomly select the following three counties (see Table 2.2):

County Population
Montgomery 819,000
Bucks 630,000
Allegheny 1,200,000

Assuming there are three people per household, what is the sampling weight for the selected
households in each of these three counties?
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The text is as follows:

If some political polls were truly accurate, Alf Landon would have been America’s president during World
War II, instead of FDR. Here’s a look at an alternative universe of politics, as we examine the five
biggest political poll blunders in U.S. history.

Alf Landon beats FDR in a landslide

The mother of all botched political polls was a 1936 Literary Digest straw poll survey that said GOP
challenger Alf Landon would win in a landslide over the incumbent, Franklin Delano Roosevelt, with 57
percent of the vote.

The Literary Digest used national straw polls in 1920, 1924, 1928 and 1932, and it guessed the winner
of each presidential election.

In 1936, a young rival pollster, George Gallup, made his own prediction before the magazine issued its
poll; He said Literary Digest would get it all wrong, despite the Digest’s decent track record in previous
polls.

So was right? The Literary Digest disaster helped establish Gallup as the nation’s pre-eminent pollster.
The Digest polled about 2 million people, most of who were magazine readers, car owners or telephone
customers—and had money during the Depression. It was not a representative sample.

Gallup used a random poll sample of 50,000 people.

President Roosevelt won the 1936 election easily, with 63 percent of the vote, and the Literary Digest
was out of business the following year. If he had won, Landon could have been our wartime president.



3 QUESTIONNAIRE DESIGN



CHAPTER PREVIEW

Terms Definitions and key points
Structured
questionnaire

Fixed set of questions phrased in a standardized way and given in the
same order for every respondent

Semi-
structured
questionnaire

Some standardized questions, but some part of the questionnaire is
informal and flexible. Topics may vary from one respondent to another.

Open-ended
question

A question that allows the respondent to answer in any manner, with the
response being recorded in the form of a narrative text

Closed-ended
question

A question for which the response can be expressed as a single number
or categorical response

Question order
Order questions by topic.

Move from general to specific questions.

Place sensitive questions last.



Terms Definitions and key points
Question
phrasing Be specific about who is referred to.

Be specific about time frame.

Be clear about definitions.

Avoid leading questions.

Continuous
responses Responses that can take on any numerical value

Need to specify the unit of measure

Categorical
responses

Responses based on predefined representative categories

Skip patterns Guidelines that indicate which questions should be skipped when
questions don’t apply to all respondents based on previous answers

3.1 INTRODUCTION
What questions should be included in the survey? How should the questions be phrased? And how
should the responses be recorded? These are some of the important issues involved in designing the
questionnaire, one of the most important and time-consuming steps in implementing a survey. If a key
question is omitted from the questionnaire, important information will be lost. If too many questions are
included in the questionnaire, respondents may tire and stop answering, leading again to the loss of
information. And if a question is poorly phrased, the results may be difficult or impossible to interpret.

This chapter provides some guidelines for the design of questionnaires, including question order,
phrasing, and response codes. For additional information on questionnaire design, Grosh and Glewwe
(2000) have edited a volume with detailed information on questionnaire design for developing countries.
Ekinci (2015) provides a more concise review, focused on business and management research. Rea
and Parker (2005) provide another valuable reference on the issues of questionnaire design.

3.2 TYPES OF QUESTIONNAIRES
Survey questionnaires can be categorized according to the type of interview, based on whether or not
they are structured or not, and by the types of questions. The guidelines for designing a good
questionnaire depend on what type it is.

3.2.1 Type of Interview
As shown in Table 3.1 below, interviews may be carried out online, by mail, by telephone, or with a face-
to-face interview. One of the main challenges in all these approaches is getting cooperation from
respondents. People are busy, and they may tune out research surveys because of the large number of
commercial “surveys” designed to sell a product or solicit donations. Another challenge is to ensure that
the respondents are representative of the larger population. As described later, a biased or
unrepresentative sample can give highly misleading results.



Type of
interview How responses are recorded Comments

Online form Respondent is sent a link and
responds to questions on a web
page

Questions must be carefully phrased because
there is no enumerator to explain if the
respondent is confused.

Mail-in
questionnaire

Respondent receives a
questionnaire in the mail and
submits responses by mail

Many recipients will not complete the
questionnaire, raising questions about the
representativeness of those who do

Phone
interviews

Respondent receives a phone
call and answers questions over
the phone

Many recipients will not answer or be unwilling to
answer questions. Only suitable for short
interviews.

Face-to-face
interview

Respondents are contacted at
home or in a public place for the
interview

Home interviews are less common than they
used to be. Public interviews need to be short.

3.2.2 Structured and Semi-structured Questionnaires
An important distinction in questionnaire design is between structured and semi-structured
questionnaires. A structured questionnaire has a fixed set of questions, phrased in a standardized way,
and given in the same order for every respondent. Some questions may be skipped for certain types of
respondents; for example, a question about the respondent’s spouse would be skipped for respondents
who are single. However, the same rules about skipping questions apply to all respondents.
Furthermore, the questions in structured questionnaires are generally designed so that the responses
are either a continuous variable or a categorical variable, rather than open-ended questions with
narrative responses.

In a semi-structured questionnaire, some of the questions are standardized and asked in a specific
order, but part of the questionnaire is more informal and flexible, with questions and topics of discussion
that vary from one respondent to another. The unstructured section of the questionnaire may consist of
a list of suggested questions or just topics of discussion. The questions in this section are often open-
ended, and the order is flexible. This portion of the interview is more journalistic in nature, where new
questions are formed in response to answers to the previous questions.



The entire interview may be informal and unstructured. However, the list of suggested questions and
topics for discussion is not normally considered a questionnaire, so it is outside the scope of this
chapter.

The results of unstructured interviews (and the unstructured portion of semi-structured interviews) are
difficult to analyze in a systematic way for several reasons. If the questions are not standardized across
respondents, then the sample varies across questions, making it difficult to summarize. Responses to
open-ended questions can be summarized qualitatively, but statistical analysis requires either time-
consuming classification of responses or complex computer algorithms for analysis of text. For this
reason, unstructured and semi-structured surveys generally use small samples.

On the other hand, unstructured interviews provide rich information on the perceptions, beliefs, and
motivations of respondents. They may uncover issues or patterns that the researcher did not anticipate
at the beginning of the study. Unstructured interviews can be used to identify key issues in preparation
for the design of a structured questionnaire for a large-scale formal survey. In addition, unstructured
interviews can be used after a formal survey to help interpret or explain the results of the survey.
Because our main interest is generating data for analysis, this chapter focuses primarily on the design of
structured questionnaires. Table 3.2 summarizes some of the characteristics of each type of survey.

 
Structured Surveys

Semi-
structured
Surveys

Unstructured Surveys

Types of
questions

Mainly closed Open and
closed

Mainly open

Phrasing,
order, and
content of
questions

Standardized for all respondents Partly
standardized

Varies across respondents

Sample size Can be large Usually
small

Usually small

Type of results Quantitative Quantitative
and
qualitative

Qualitative



 
Structured Surveys

Semi-
structured
Surveys

Unstructured Surveys

Strengths Numerical results; can generate
unbiased estimates of population
parameters with confidence intervals

Mix of both May reveal new issues or
unexpected responses;
questions adapt to earlier
answers

Weaknesses Questions and responses are fixed
before the survey begins

Mix of both Qualitative results, only
practical for small sample

3.2.3 Types of Questions
Although we referred to open-ended questions above, it is useful to define the term more precisely. An
open-ended question (or open question) is one that allows the respondent to answer in any manner,
with the response being recorded in the form of narrative text or summary notes. Examples of open-
ended questions include, “What is your view of gun control legislation?” or “Why do you think some
people succeed and others do not?”

In contrast, a closed-ended question (sometimes called a closed question) is one for which the
respondent either gives a number or selects from a set of predetermined responses. Closed questions
can be divided into two categories depending on the type of response.

1. A closed question may generate a continuous variable, representing a measurement of a physical
quantity such as weight, length, time duration, or frequency. Examples include, “How old are you?”
and “How many hours a week do you watch television?”

2. A closed question may generate a categorical variable. This includes yes/no questions, such as,
“Are you married?” and “Do you own a car?” It also includes multiple-choice questions, such as,
“What is your education level?” and “What is your marital status?” where the respondent chooses
among several options. In each case, the response is verbal, but it is coded in the database as a
number.

As discussed earlier, most medium- and large-scale surveys use structured questionnaires with closed-
ended questions. For this reason, we focus on this type of questionnaire for the remainder of the
chapter.

3.3 GUIDELINES FOR QUESTIONNAIRE DESIGN

3.3.1 General Guidelines
Before we discuss the specifics of designing the questionnaire, it is useful to list a number of general
guidelines to make the questionnaire clear and easy for the interviewer to use and for the respondent to
understand.

Whether the interview is in-person, online, or by mail, all questions should be written out in full to
reduce ambiguity and ensure that the question is asked in the same way to all respondents.

For in-person and phone interviews, the instructions to interviewers (also called enumerators)
should be clearly distinguished from the questions themselves. This can be done by using a
different font or putting the instructions in brackets.



For all types of questionnaires, each categorical response option should be written out in full. This
helps standardize the way the questions are asked.

In paper questionnaires, it is preferable for the enumerator to record the number code of the
response rather than circling or marking the response on the list. In addition, it is a good idea to use
boxes to indicate where each response code should be written. This will reduce the time and
increase the accuracy of data entry by making it easy to find and enter the response code in the
computer.

Computer-assisted personal interview (CAPI) methods are becoming widespread. CAPI software is
available to program computers, tablets, or phones to record data in the field (e.g., ODK,
SurveyCTO, and Surveybe). In addition to eliminating the time and errors associated with entering
data into a computer from paper questionnaires, this approach allows the researcher to incorporate
quality checks into the tablet program, flagging errors and allowing the enumerator to correct them
during the interview.

There are many software packages that will allow you to design an online questionnaire, and some
of them are free. SurveyMonkey, for example, is free for small-scale surveys, though there is a fee if
the questionnaire or the sample is large. There are many similar packages that are easy to learn
and have the ability to create many types of questions, including multiple choice, rank order, slider,
and tables. These packages will also allow you to print a copy of the questionnaire if you plan to do
an in-person interview where an enumerator fills in the questionnaire.

The research questions of the study help determine the range of questions to be included in the survey.
The questions should, of course, address the central research questions, but they should also include
questions to help explain the responses to the main questions. For example, political opinion polls
naturally focus on respondents’ support for different candidates, but they also ask questions about the
respondents’ age, sex, education, and party affiliation because these characteristics often help “explain”
political preferences. Similarly, a survey of college students regarding the time spent on sports could
include questions about the student, including sex, age, scholarship status, high school experience with
sports, and so on.

3.3.2 Question Order
The order of the questions should follow four general guidelines. First, the questions should follow an
order determined by the topics, moving from one topic to the next. For example, group questions about
education together before moving on to health. Whenever possible, the questionnaire should avoid
returning to a topic covered earlier. This keeps the interview as close to a “natural” conversation as
possible for in-person interviews. In addition, it probably reduces frustration among respondents that
might be caused by going back to an earlier topic.

Second, within each topic the questionnaire should start with general questions before moving on to
specific questions. The general questions will help determine which specific questions should be asked.
For example, if a general question determines that the respondent does not drink alcohol, one can avoid
specific questions about how much they drink. Similarly, a general question whether the respondent has
children should precede questions about those children.

Third, it is better to start the interview with topics that are not sensitive, such as household composition.
More sensitive topics, such as income level or use of contraception, should be asked toward the end of
the interview. The respondent will probably feel more comfortable discussing sensitive topics after
spending some time with the enumerator. In addition, if the sensitive topics cause the respondent to
break off the interview or stop filling out the questionnaire, less information will be lost if these questions
are asked toward the end of the interview.



Finally, it is preferable to have the questions most important for the intended analysis toward the
beginning of the questionnaire. This way, if the interview cannot be completed, at least the essential
questions will have been covered. Clearly, these guidelines may conflict with one another. This
highlights the importance of testing the questionnaire one or more times before finalizing the wording,
question order, and response options.

3.3.3 Phrasing the Questions
In designing the questions, it is important to make sure they are clear and unambiguous. This means
avoiding research jargon or other vocabulary that might not be familiar to some of the respondents. The
questions should also avoid abbreviations and acronyms unless they are universally understood. Finally,
the questions need to be specific about who they refer to. In English, “you” can mean you (singular),
referring to the respondent himself or herself, or it can mean you (plural), referring to the respondent’s
family. Take the following question:

“Have you taken out a loan?”

It is not clear who the question refers to, the respondent alone or anyone in the household. If the
researcher is interested in access to credit by the household, a better phrasing would be as follows:

“Have you or anyone in your household taken out a loan?”

The questions also need to be explicit about when—that is, the time period referred to. In the question
above, it is not clear if the respondent should include a loan received many years ago as a college
student. Thus, the question above would be better phrased as follows:

“Have you or anyone in your household taken out a loan in the past 12 months?”

Note that “in the past year” is ambiguous because it could mean over the past 12 months or during the
current calendar year. For this reason, “in the past 12 months” or “since this time last year” is better.

Finally, the questions should be explicit about what they are referring to. In the example above, what is
the definition of a loan? Should it include $20 borrowed from a friend, or is it limited to official bank
loans? If the latter, do we include loans from credit cooperatives and other nonbank financial
institutions? To remove the ambiguity, the question could be rephrased as follows:

“Have you or anyone in your household taken out a loan from a bank or other financial institution in the
past 12 months?”

Another important factor in phrasing questions is to avoid making any assumption about the respondent
that has not been verified in a previous question. Table 3.3 gives some examples of questions that make
assumptions about the respondent that may or may not be true.

Question Implicit Assumption
How old is your oldest child? The respondent has at least one child.



Question Implicit Assumption
How much do you pay in rent? The respondent rents his or her housing.
What is your favorite radio station? The respondent listens to the radio.
Which state were you born in? The respondent was born in the United States.

One way to address this problem would be to include a response option for the excluded answer, such
as, “I don’t have a child,” or “I don’t pay rent.” A better approach, however, is to add a prior question that
determines whether this is a valid question. For example, see Table 3.4:

No. Questions Response Codes or Units Response
A1 Do you have any children?

1. Yes
2. No

If no, skip to A3

A2 How many children do you have? Number  

For in-person and phone interviews, it is important to provide clear instructions on which questions to
skip based on responses to earlier questions. For online surveys and CAPI-based interviews, the skip
patterns should be programmed with the software. The topic of skip patterns is discussed in Section
3.7.

It is also important to avoid “double-barreled” questions, meaning questions that may have two (or more)
responses because the wording of the question combines multiple issues. Examples include the
following:

“Do you believe that supermarkets should sell cheaper and more nutritious food?”

“Do you think the county government should spend less on salaries and more on roads?”

“How often do you purchase gasoline, and how much do you spend?”

The solution is to separate the individual queries into two or more questions, so that respondents are
not forced to answer two questions with one response.

Finally, the researcher should also ensure that the questions are neutral and do not “lead” the
respondent to answer in a certain way. Table 3.5 provides some examples of questions that clearly
express a point of view on the topic and “lead” respondents to adopt the same view. To nudge
respondents one way or another, leading questions use terms and concepts with positive associations
(e.g., “family business” and “protect people”) or ones with negative associations (e.g., “runaway
spending” and “pork-barrel projects”). Some of them include reasons for supporting or opposing the
statement within the question.



Topic Leading Question Toward a “Yes”
Response

Leading Question Biased Toward a
“No” Response

Welfare Do you feel the government has a moral
responsibility to assist families who are
in need through no fault of their own?

Do you support the use of your hard-
earned tax dollars to hand out welfare
checks to people?

Infrastructure
spending

Do you agree that the government
should be investing more in our
crumbling infrastructure to promote
economic growth?

Do you think the government should
indulge in runaway spending on pork-
barrel projects that could worsen the fiscal
deficit?

City health
code

Do you support the new city law that
would strengthen the health code and
protect people from unsanitary
conditions in restaurants?

Do you support the new city regulations on
restaurants that impose unnecessary costs
on family businesses and threaten food
service jobs?

The above examples are heavily biased to demonstrate the effect, but in actual questionnaires, the bias
may be less obvious. One method for testing for bias is to have someone read over the question and
guess which response the researcher would give for that question. If the wording provides clues to the
researcher’s own views, the question should be revised.

Researchers designing questionnaires should also be aware of social desirability bias, which refers to
the tendency of respondents to give answers that are socially acceptable rather than accurate.
Questions about whether the respondent has voted may overestimate the proportion of adults who vote
because people may be reluctant to admit that they did not vote. Likewise, questions about domestic
violence, illegal drug use, or cruelty to animals are likely to underestimate their prevalence. Questions
should be phrased to make respondents comfortable enough to admit the truth. In addition, the results
should be interpreted with a recognition that the responses may overestimate socially desirable
responses.

3.4 RECORDING RESPONSES
As mentioned above, closed questions can yield two types of responses: (1) a continuous variable or (2)
a categorical variable. The methods for capturing information from each type of question are described
below.

3.4.1 Responses in the Form of Continuous Variables



A continuous variable describes a quantity of something and requires a unit, such as kilograms or years.
Examples of questions leading to a continuous variable are as follows:

How old are you (age at last birthday)?

How tall is your child, expressed in centimeters?

What is the area of your farm in hectares?

How much gasoline do you purchase each week, expressed in gallons?

How much do you spend per month on mobile phone service?

For continuous variables, it is necessary to gather information on the unit of measure (e.g., centimeters,
hectares, gallons). This can be done within the question itself, when it is appropriate to assume that all
responses can be given in the same unit. Table 3.6 gives an example:

No. Questions Response Codes or
Units Response

B1 How many times per month do you go out to the
movies?

Times/month  

In other cases, respondents may use different units. In this situation, it is better to convert to a standard
unit in the data analysis phase than to ask enumerators or respondents to do calculations in their heads.
In this case, the unit of measure is entered as a separate variable, as shown in Table 3.7.

No. Questions Response codes or Units Response
B2 How frequently do you go out to the movies? Number of times  

1. Per week
2. Per month
3. Per year

 

In addition, for any questions that involve flows, the unit of time should be specified or the respondent
should be allowed to select the time unit. For example, income, spending, driving habits, and frequency
of exercise all have a time dimension, which needs to be captured in the questionnaire.



3.4.2 Responses in the Form of Categorical Variables
For categorical questions, most large-scale formal surveys use precoded response options, meaning
that the possible responses to each question are specified before implementing the survey. There are
three advantages of precoding:

1. During the interview, the response can be recorded quickly by checking a box or writing a number,
rather than writing the full response in words.

2. After the survey, there is no need to examine all the answers and classify them into groups, a time-
consuming process.

3. Finally, it avoids the situation where a response is ambiguous or covers two different response
options.

The disadvantage of precoding responses is that the response options must be carefully selected to
cover all likely responses. It may be useful to include an “other” option and, in some cases, allow the
respondent to specify in words a response that is not listed.

In preparing the response codes for categorical questions, it is important that the response options be
both mutually exclusive and exhaustive. The responses should be mutually exclusive in the sense of not
overlapping with each other. For example, a respondent might be both divorced and a widow. It is
important to include instructions on how to handle difficult cases, either in the questionnaire for online
surveys or in the training for in-person interviews. For example, the enumerators could be instructed to
select the first option that applies. Or the question could indicate that the respondent should “check all
that apply.”

In addition, the response options should be exhaustive, covering all—or at least the vast majority of—
cases. The use of “other” ensures that the response options are exhaustive, but ideally “other” should
represent only a small share of the responses—say, less than 5% of the total.

Closed questions can be used to collect information on opinions. One approach is to give a statement to
the respondent and ask about the degree of agreement (Table 3.8). For example, political polls often
use a 5-point Likert scale.

No. Questions Response codes or
Units Response



No. Questions Response codes or
Units Response

B3 My representative in Congress stands for the interests
of people like me. 1. Strongly agree

2. Agree
3. Neither agree nor

disagree
4. Disagree
5. Strongly disagree
6. Do not know

 

Closed questions can even be used to address “why” questions if the researcher has a good idea of the
most common responses. In this case, it may be useful to include “Other” as a response option. If
“Other” is likely to be a common response, the researcher may wish to allow the respondent to specify
what the “Other” response is. For example, see Table 3.9:

No. Questions Response codes or Units Response
B4 Why do you rent your housing rather than

buying an apartment or a house? 1. I cannot afford the down
payment

2. I don’t think I would be able
to get a mortgage

3. I don’t plan to live in this area
very long

4. I prefer not to make a major
financial commitment

5. Other (specify)

 

3.5 SKIP PATTERNS
Skip patterns are guidelines in the questionnaire to tell the enumerator which questions should be
skipped over based on the responses to earlier questions. It is important that these be clearly specified
in the questionnaire to ensure consistency in the way questions are asked from one respondent to the
next. When asking about members of the household, many questions are age-specific. For example,
questions about school attendance are not appropriate for infants, while questions about occupation and
marital status only make sense for adults. Rather than basing the skip patterns on vague terms such as
infant and adult, the questionnaire should specify the appropriate age range for each question.



Skip pattern instructions, like other instructions to the enumerator, should be distinguished from the
wording of questions. For example, instructions to the enumerator may be put in italics or in brackets to
distinguish them.

The skip patterns can get complicated, particularly if there are multiple branches that the interview could
take. For example, a set of questions about housing can take three paths depending on the answers to
the first and third questions (See Table 3.10).

No. Questions Response Codes or
Units Response Skip

Instructions
B5 Do you own or rent your housing?

1. Own
2. Rent

 If “Own,” skip
to B7

B6 How much do you spend on rent each
month?

$/month  Skip to B9

B7 Do you have a mortgage?
1. Yes
2. No

 If “No,” Skip
to B9

B8 How much do you pay per month for your
mortgage?

$/month   

Clearly specifying the skip pattern is important whether the responses are being recorded on a paper
questionnaire or on a tablet. With paper questionnaires, the skip pattern must be included in the
questionnaire so that the enumerator can clearly see which questions should be asked next, based on
the previous answer. This is a common source of error in implementing paper-based questionnaires, so
it is worth emphasizing the skip patterns in training the enumerators.

With tablet-based questionnaires, the skip patterns need to be incorporated into the program with a
series of if–then commands so that the enumerator is automatically guided to the correct question,
depending on the responses to previous questions. One of the important advantages of tablet-based
questionnaires is that, by incorporating the skip patterns into the program, data collection errors are
greatly reduced.

The skip patterns have implications for the analysis of the data. Questions that are skipped over in the
interview will be recorded as missing values in the data. In the earlier example, the respondents are first
asked whether they have any children and, if the response is “yes,” then asked how many. In this case,
the variable for number of children will be missing (rather than zero) if there are no children. Calculating



the average of this variable will give the average among those respondents with children. If the
researcher wants the average number of children including the zeros, the missing values will need to be
replaced with zeros.

3.6 ETHICAL ISSUES
The formal review of ethics in research was prompted by a number of cases of extreme abuse of
research participants, most notably the Tuskegee Syphilis Study (1932–1972). Congress passed the
National Research Act of 1974, which led to the Belmont Report, outlining issues and guidelines for the
use of human subjects (National Commission for the Protection of Human Subjects of Biomedical and
Behavioral Research, 1979). Subsequent regulations require the establishment of institutional review
boards (IRBs) to review and approve (or reject) research plans to protect the rights and interests of
human subjects. IRBs are certified and regulated by the Office for Human Research Protections of the
Department of Health and Human Services. Almost all universities, hospitals, and research institutes in
the United States have created IRBs.

Biomedical research is strictly controlled to ensure that the risks associated with testing new drugs and
treatments are understood by the participants and that the potential benefits outweigh the risks. Medical
researchers must apply for and obtain approval for each study from their IRB. The regulations are not as
tight on surveys and other forms of social science research, but approval from an IRB is required if the
research involves human subjects. Even without the risks associated with new drugs or treatments,
respondents are offering their time to answer questions, some of which may be on sensitive topics.

IRB approval is based on three broad criteria. First, it is necessary that respondents or participants give
informed consent to participate in the study. Informed consent means that the respondents must give
prior approval for their participation after receiving information about the study and the nature of their
involvement. This typically takes the form of a paragraph explaining to the respondents about who is
carrying out the survey, the goals of the survey, and any risks or benefits of participation.

Second, participants must be assured of confidentiality, meaning that the results of the survey will be
presented in aggregate form so that the responses of individuals cannot be identified. Furthermore, if
the data are shared with other researchers, any variables that allow the identification of individual
respondents (e.g., names, addresses, phone numbers, or GPS [Global Positioning System] coordinates)
will be removed from the data set.

Third, the IRB approval depends on an assessment that the costs and risks to the participants are
justified by some benefit to the public at large. Although somewhat subjective, this criterion ensures that
the research is worthwhile, taking into account any cost or inconveniences to the participants. There are
special protections for vulnerable groups, including racial minorities, very ill people, children, and
prisoners.

Additional information on IRBs is available from Qiao (2018) and Protection of Human Subjects (2009).

EXERCISES
1. Which of the following questions generate responses that are continuous variable responses and

which ones generate responses that are categorical variables?
a. How old are you?
b. What is the highest educational degree you have completed?
c. How many years of education do you have?
d. What state were you born in?
e. Are both of your parents still alive?
f. How many times per week do you exercise?



g. What is your weight in pounds?
2. Identify the hidden assumption(s) or the flaw(s) in the following questions.

a. How much do you earn at your job?
b. What is the age of your oldest child?
c. In light of his ineffectiveness, do you agree that the governor should not be reelected?
d. How old (in years) is your car?
e. How frequently do you go shopping?
f. Do you think the town firefighters should be full-time workers and paid more?

3. What are skip patterns in a questionnaire, and what purpose do they serve?
4. Give an example of social desirability bias and how it might affect the accuracy of results in a

survey.
5. How would you use skip patterns to design questions to gather information about the car payments

of a sample of respondents?
6. What are the three main principles for research on human subjects used by IRBs to approve

research? Given an example of a violation of each principle.

KEY TERMS

closed-ended question

enumerators

leading questions

Likert scale

open-ended question

skip patterns
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CHAPTER PREVIEW

Stata Basics Specifics
Opening Stata

Click on Start and search for Stata

Double-click on any file generated with Stata

Double-click on the Stata icon



Stata Basics Specifics
Stata windows

Results

Review

Command

Variables

Properties

Working with existing data
Command window

Menus

Do-files

Entering your own data into Stata
Entering data

Renaming variables

Creating variable labels

Creating value labels

Using log files and saving your work
Opening and closing a log file

Copying output to a word processor

Saving changes to your data

Getting help
Help command

Search command

Stata website

Using the Google Search Engine



Stata Basics Specifics
Stata command examples

tab mditate1

rename var1 hand

label define handlabel 1 “Right” 2 “Left”

label value hand handlabel

log using “c:\gunlaw”, text (on a PC)

log using “c:/gunlaw”, text on a Mac)

save “c:\filename.dta” (on a PC)

save “c:/filename.dta” (on a Mac)

4.1 INTRODUCTION
Stata is a powerful statistical software package that is relatively easy to learn. As described in the
preface, it has been growing rapidly in popularity and is used almost exclusively in some fields. It is
particularly popular in the fields of biomedicine, epidemiology, economics, political science, psychology,
and sociology. Learning data analysis with Stata will provide you with a distinct, marketable skill.

In this chapter, we will learn the basics of Stata and move on to more advanced skills in later chapters,
where we will use Stata to examine descriptive statistics and test hypotheses. By completing the
examples and exercises in this book, you will have a basic knowledge of Stata that you can build on as
you develop more advanced statistical skills through further study or use.

4.2 OPENING STATA AND STATA WINDOWS
You can open Stata by clicking on Start and then searching for the Stata program. If the Stata icon is on
your desktop, you can click on the Stata icon. You can also click on any file created with Stata to open
the package. We will begin by double-clicking on the GSS2021.dta file and examining Stata’s five main
windows.

Figure 4.1 shows the opening screen. This screen will be the same on both a PC and a Mac computer.
There are a few minor differences, however, when using a PC or a Mac. For example, Ctrl + D on a PC
is replaced by Command + Shift + D on a Mac. These differences are noted in the chapter when
necessary.



Description

Figure 4.1 Opening Stata Screen

Like most software packages, the top row offers a set of menus followed by a second row of icons for
functions that are used most frequently. In addition to these standard features, there are five windows
that appear: (1) the Results Window (which is the largest window in the center without a label), (2) the
History Window on the left, (3) the Command Window at the bottom, (4) the Variables Window on the
upper right side, and (5) the Properties Window on the lower right side.

4.2.1 Results Window
Once you start using Stata to analyze data, all of your recent commands, output, and error messages
will appear in the Results Window in the center of your screen. The slide bar or scroll bar on the right
side can be used to look at earlier results that are not on the screen. However, the Results Window
does not keep all of the output generated. By default, it will keep about 500 lines of the most recent
output and delete any earlier output. If you want to store output in a file, you must use a log file, which
is described in more detail later.

4.2.2 History Window
This History Window on the left lists all the recent commands. If you click on one of the commands, it
will be copied to the Command Window at the bottom of the screen, where it can be executed by
pressing the “Enter” key. Or you can modify the command first and then run the command. If you
double-click on the command, it will be directly re-executed by Stata.

4.2.3 Command Window
This Command Window at the bottom of the screen allows you to enter commands that will be executed
as soon as you press the “Enter” key. You can also use recent commands again by using the “Page Up”
key (to go to the previous command that appears in the History Window) and “Page Down” key (to go to
the next command). If you double-click on a variable in the Variables Window, it will appear in the
Command Window.

4.2.4 Variables Window



The Variables Window on the upper-right side of your screen lists all the variables in the data set that is
open. You can increase the size of this window to see the variable names and their variable labels. If
you create new variables, they will be added to the list of variables. If you delete variables, they will be
removed from the list. You can insert a variable into the Command Window by double-clicking on it in
the Variables Window.

4.2.5 Properties Window
The Properties Window on the lower right side provides information about the variables in the open data
set. If you click once on any variable in the Variables Window, the Properties Window will give you
information about that variable, such as the name, label, and type of variable, along with information
about the data set.

4.3 WORKING WITH EXISTING DATA
Let’s begin by using the General Social Survey data set from 2021 (GSS2021) that we already opened
above. This is a data set that explores attitudes, behaviors, and demographic information about people
living in the United States. It has been collected almost every year since 1972. Because we will use the
survey from just one year, 2021, it is called a cross-section data set. This means it looks at a cross-
section of responses at one point in time. Every row represents the response of one individual, and all
responses are from the same point in time. If instead, we followed the inflation rate, interest rates, and
money supply in one country over 30 years, it would be a time series data set, since it represents data
or information over time. In that case, each row represents a different year. Finally, a panel data set
combines both cross-section data and time series data. For example, if you followed 100 patients after
surgery for 10 years and measured their progress, you would be using cross-section data (100 patients
in 1 year) and time series data (each patient’s results every year over 10 years). In this case, each row
represents one cross-section unit (a patient) and one time period (a year).

Let’s suppose that we want to find out what proportion of the population meditates. This is called a
categorical variable since it has seven categories or possible responses. Continuous variables, on the
other hand, are variables that take on a specific value, such as someone’s exact age or income. Types
of variables and their measurement are discussed in more detail in Chapter 6.

There are three ways to obtain information on what proportion of the population meditates using Stata:
(1) the Command Window, (2) menus, and (3) do-files.

In the Command Window at the bottom of the screen, we would type in tab mditate1 and press “Enter.”
You can also type tab mdi and then the “Tab” key. This will fill in the rest of the variable name
automatically. The information in Figure 4.2 would then appear in our Results Window. Notice that our
command tab mditate1 also appears in the History Window located to the left of the Results Window. If
we double-click on the command in the History Window, the command will be executed again. If we click
only once on the command in the Review Window, it will appear in the Command Window.
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Figure 4.2 Frequency Table Of Meditation Use

In the Results Window, you will notice that the command tab mditate1 is shown above the output.
When we typed the command into the Command Window, we shortened tabulate to tab. Stata accepts
abbreviations for commands, but in some cases, such as the table and tabulate commands, table must
be spelled out completely. Otherwise, tab is mistaken for tabulate. If you are unsure, you can use the
help file to look up a command, and it will underline that portion of the command that must be typed.
More information about the help file is in Section 4.6.

The second method with which to interact with Stata is by using menus. Although we will describe how
to use menus to generate statistics throughout the book, we do not encourage the use of menus.
Instead, we encourage students to use do-files, which are described later, along with their benefits. To
generate the same output as in Output 4.1 using menus, we would click on the sequence listed below
that would bring us to a dialog box. In this box, we would select the variable “mditate1” in the drop-down
menu under “categorical variable” and then click on “OK.”

Statistics → Summaries, tables, and tests → Frequency tables → One-way table

Finally, the third way to interact with Stata is through the use of do-files. A do-file is a file where you type
commands or code rather than using menus. By using do-files, you can save, revise, and rerun
commands. This is particularly helpful if you have completed much of your analysis but then make
changes to the data or if you add new observations to your data set. Instead of writing out new
commands in the Command Window or clicking on menus for each analysis, you would simply highlight
the commands in your do-file and run them all at once. Do-files are also important since they document
changes to your data set and allow you to collaborate with others. Most data analysis should be carried
out using the do-file editor.

To use a do-file to generate a frequency table of how often respondents meditate, we would open a do-
file. The fastest way to open a new do-file is to click on the icon that shows a notepad with a pencil or by
pressing Ctrl + 9 if you are using a Personal Computer (PC), or Command + 9 if you are using a Mac
computer. You could also use menus by clicking on “Window → Do-File Editor → New Do-File Editor.”
Once you have your do-file open, type in tab mditate1 on the first line. Pressing on “Enter” will only take
you to the second line and will not run the command. Instead, you can either put your cursor anywhere
on the line and press Ctrl + D if you are using a PC and Command + Shift + D if you are using a Mac. If
you have more than one line in your do-file, this will run all of the commands. If you only want to run one
command, then you need to highlight at least one character on the line that you want to run before
pressing Ctrl + D or Command + Shift + D. Instead of Ctrl + D or Command + Shift + D, you can also



click on the icon that shows a paper with the corner folded down and an arrow, which is the “Execute
(do)” icon.

4.4 SETTING PREFERENCES IN STATA
As you continue to work with Stata, you may find that having two or three windows open at any given
time (results, do-file, data editor) can be tedious if you have to find each window as you need them. If
they are too large, only one window will appear on your screen and the others can only be found by
hovering your cursor over the Stata icon at the bottom of your screen. Or, if you are running a command
on the do-file and can’t see the results window, you will not know if the command was executed or had
an error. It is standard practice, therefore, to set your window-size preferences. Once this is done, you
can open Stata with your defined preferences each time that you use it. Ideally, you should have a
narrow do-file open along one side of your computer screen and the opening Stata screen on the other
side. Within the opening Stata screen, the Results Window should be wide enough so that statistical
results in a table fit across the screen. Once you have the do-file and the opening Stata screen set to
your preferred size, you should now use the menus to set the preferences by clicking on the following
sequence:

Edit → Preferences → Save preference set → New preference set → Give a name to your
preference set and click on “Okay”

The next time that you open Stata, click on:

Edit → Preferences → Load preference set → Choose your preference set

4.5 ENTERING YOUR OWN DATA INTO STATA
To enter your own data into Stata, we would start by double-clicking on the Stata icon. We would then
open the data editor by clicking on the icon that shows a spreadsheet with a pencil. We could also use
the menus and click on “Data → Data Editor → Data Editor (Edit).”

With the data editor open, we can now type data into the cells. Suppose, for example, there are 10
students in a classroom. We would first fill in the first column with numbers 1 through 10 so that each
student has an identification number or ID. Alternatively, you could type in each student’s name. We
could then ask each student to indicate how many siblings are in their family including themselves and
record the response in the second column. Finally, we could ask each student if they are right-handed or
left-handed. Right-handed would be recorded as “1” and left-handed would be recorded as “2.” The data
would appear as illustrated in Figure 4.3.
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Figure 4.3 Entering Your Own Data For Two Variables Plus An Id

Next, we would want to give each variable a name, a variable label, and value labels for the question
about dominant hand. To do this, we would open a do-file by placing the cursor on the main screen of
Stata and clicking on the do-file icon. In our do-file, we would type the following commands as illustrated
in Figure 4.4 and explained next.
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Figure 4.4 Do-File To Create Variable Names, Variable Labels, And Value Labels

First, note that we can write notes within the do-file to indicate what we are doing. If there is an asterisk
at the beginning of a line, Stata will ignore the line. We can also skip lines to keep the do-file more
organized.

The first four lines are used to rename the variables from “var1,” “var2,” and “var3” to “id,” “siblings,” and
“hand,” respectively. In Stata, variable names are case sensitive, meaning that “siblings,” “Siblings,” and
“SIBLINGS” would be considered three separate variables.

Lines 6 through 9 are used to give each variable a label, which is often shown in Stata output tables.
This is useful when the variable name alone does not give enough information about the variable. In
Lines 11 through 13, we are creating value labels, which indicate for the variable “hand” that each
number represents right or left. Note that we first define a set of labels using label define hlabel 1
“Right” 2 “Left.” The word “hlabel” can be any word that we choose. We then apply these labels in Line
13. Finally, we can generate two tables in Lines 16 and 17 that use the variable labels and value labels.
The output from this do-file is shown in Figure 4.5.
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Figure 4.5 Frequency Tables After Creating Variable Names, Variable Labels, And Value
Labels

4.6 USING LOG FILES AND SAVING YOUR WORK
As mentioned earlier, the Results Window does not automatically keep all of the output that you
generate. It only stores about 500 lines. When it is full, it begins to delete the old results as you add new
results. You can increase the amount of memory allocated to the Results Window, but even the
maximum amount of memory will not be enough for a long session with Stata. To save all of the output
from one session, you can use the log command to save our output in a log file.

There are several ways to start a log file. You can use the icon that shows a notebook with a spiral
binding, or you can click on File and then Log from the menus. You can also use a log command in the
Command Window. Finally, you can use log commands in the do-file. Because it is so important to learn
to use do-files for most of your work, we will focus on the use of log commands within do-files.

Let’s use the GSS2021.dta file to work through an example about views on gun permits in the United
States. After opening the file, we could type the following commands into a do-file as shown in Figure
4.6.
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Figure 4.6 Do-File To Open And Close A Log File

Line 1 tells Stata to change the directory to the location of the folder where you want to store the log file.
We could indicate “your path” in Line 2 as the location. However, if we want to collaborate and allow
others to use our do-file, it is better to use this technique. Each collaborator could then change the
directory to their own path and run the rest of the do-file.

Line 2 tells Stata where you want to save the log file (your path) and the name of the log file. You could
put it in any directory and folder. You can also give the log file any name. At the end of Line 2, we used
the command text to let Stata know that we want the format to be a text file. If we didn’t specify this,
Stata would make this a Stata Markup and Control Language (smcl) file that could only be opened in
Stata. A text file, on the other hand, can be opened in Word, Notepad, or any word processor.1 Line 3
generates a frequency table on views about favoring or opposing gun permits. Finally, the last line
closes the log file. Figure 4.7 shows the full contents of the log file that is generated.

Description

Figure 4.7 Log Files In Text Format Generated By Stata



Notice that the formatting for the table shows dotted lines instead of solid lines. Although you could cut
and paste this table into a report, the dotted lines are not ideal. Instead, there are several ways to copy
the table into a document. Within Stata, you can highlight a table and then use menus to click on “Edit”
and “Copy as picture.” If you prefer an image with a border, you could use the “Snipping Tool” that is
included in all Windows operating systems. There are also several equivalent software tools for Mac,
such as Grab, which is built into every operating system for a Mac computer.

In addition to the log commands that we illustrated above, there are several commands that you may
want to use. For example, if you run the same do-file multiple times as you add to it or make changes,
you must tell Stata to replace the existing log file with the newer version. Or if you want to add output to
an existing file, you can do this with the append command. These are done as follows on a PC:

log using “c:\your file directory name\gunlaw”, replace 
log using “c:\your file directory name\gunlaw”, append

Or as follows on a Mac:

log using “c:/your file directory name/gunlaw”, replace 
log using “c:/your file directory name/gunlaw”, append

Also, there is a difference between log off and log close. With the command log off that we used
previously, we can turn the log back on by running the command log on.2

If you use log close, you can only turn the log back on by running the command log using.

In addition to saving your commands in a do-file and your output in a log file, you may also want to save
your data set if you made new variables or changes to any existing variables. It is good practice to
always keep a copy of your original file. This allows you to start over if you make any mistakes as you
modify the data. For this reason, when you save your file, you should save it under a new name that is
different from the original file name. If it is the first time you are saving your new file, you would use the
first command below on a PC. If you are using Mac, you would use the same commands with forward
slashes. If you are saving changes to the data set again later to a file that already exists, you would
need to use the second line that includes the replace command, again using forward slashes if using a
Mac. You could also use the “save file” icon in the tool bar at the top of the screen, but it is better to get
in the habit of adding all commands to your do-file so that you can document your work and rerun the
do-file as you continue your analysis.

save “c:\your file directory name\new file name.dta” 
save “c:\your file directory name\same file name as above.dta”, 
replace

If for some reason you do want to save several versions of a data file, it is convenient to put the dates in
the file name. Avoid using “new” or “old” in the file names as these labels are vague and will become
outdated.

4.7 GETTING HELP
Documentation for earlier versions of Stata came with a set of books that took up an entire bookshelf—
about 12,000 pages! Today, all documentation is built into the software. You may also find information
on the Stata website or by searching for each individual Stata command using the search engine.



4.7.1 Help Command
If you know the name of a Stata command but need more information about how to use it, you can
access the help command in two ways. First, you can type help into the Command Window along with
the name of the command. For example, you could type help tabulate. This will open a screen that
shows the tabulate command, various options that can be used with the command, how to access it
from the menus, and some examples. You can also access the help files by clicking on “Help” in the
menus and then “Stata command.”

4.7.2 Search Command
The search command can also be accessed from the Command Window or by clicking on “Help” from
the menus and then “Search.” If we type search tabulate into the Command Window, this will open a
screen with a long list of resources in addition to Stata’s help files. For example, it will include web
resources and information from other users.

4.7.3 Stata Website
At Stata’s website, www.stata.com, you can find information on Stata products, training courses,
technical support, and documentation. The training courses include online courses, video tutorials, and
classroom training. Finally, you can join user groups from this site where you may post questions about
Stata and receive responses from other users.

4.7.4 Using a Search Engine
Full documentation for each Stata command, such as “tab,” can be found by using a search engine.
Simply type “Stata tab,” and the search engine will display Stata’s own documentation for that
command.

4.8 SUMMARY OF COMMANDS USED IN THIS CHAPTER
In each chapter where we use Stata code (See Table 4.1), all of the commands used in the chapter will
be summarized in this last section before the chapter exercises. In addition, all Stata code used
throughout the book is summarized in Appendix 1.



Function Code
Frequency table tab mditate1
Variable names, variable labels, and value
labels rename var1 siblings

label variable siblings “Number of Siblings”

label define hlabel 1 “Right” 2 “Left”

label value hand hlabel

Log files
log using “c:\your file directory name\gunlaw”, text

log using “c:\your file directory name\gunlaw”, replace

log using “c:\your file directory name\gunlaw”, append

log off (turn log back on using “log on”)

log close (turn log back on by running “log using”

Saving files
save “c:\your file directory name\new file name.dta”

save “c:\your file directory name\same file name as
above.

dta”, replace

Help commands
help tabulate

search tabulate



EXERCISES
1. Ten college students were asked four questions about their streaming habits (Table 4.2):

(1) Which streaming service do you use most often to watch television shows and movies?

(2) How many hours a week do you spend watching series or movies?

(3) How often do you binge watch shows (watching more than three episodes of the same
show in a row)? They could choose from (a) not at all, (b) sometimes—one to three times per
week, and (c) frequently—more than three times per week.

(4) Gender: How do you identify? (a) female, (b) male, (c) nonbinary, (d) other

a. Based on their responses that are in the table below, enter the data for each of the four
variables. For the three categorical variables (streaming service, frequency of binging, and
genders), create a numeric code for each response. For example, for streaming service, 1
= Amazon Prime, 2 = Hulu Plus, 3 = HBO, and 4 = Netflix. (HINT: A common mistake is to
type the variable names into the first row of the spreadsheet. Do not type variable names
into the data editor spreadsheet. You should use Stata code to enter the names, which will
appear at the top of each column in the data editor spreadsheet.)

b. Once you have entered the data, use a do-file to rename each variable.

c. Give each variable a variable label.

d. Give each numeric code a value label.

e. Save your data file (you will use this again in a later chapter).

f. What percentage of the sample identify as female?

g. Which streaming service is used most frequently?

h. What percentage of students binge-watch shows frequently?



Student TV Source Hours per Week Binge Frequency Sex at BirthStudent TV Source Hours per Week Binge Frequency Sex at Birth
1 Hulu Plus 14 Not at all Male
2 Amazon Prime 18 Sometimes Female
3 Hulu Plus 20 Frequently Female
4 Netflix  5 Frequently Nonbinary
5 Netflix 12 Frequently Male
6 HBO 10 Not at all Female
7 HBO  8 Frequently Female
8 HBO  7 Sometimes Other
9 Amazon Prime 24 Frequently Male
10 Hulu Plus 30 Sometimes Female

To determine the political views of people in the United States and how often they attend
religious services, use the GSS2021 data set to complete the following exercises. These
exercises will also allow you to practice using the log commands.

a. Open a do-file and then use it for all of your commands for this exercise.

b. Open a log file and name it “gss log.”

c. Open the GSS2021 data set.

d. Generate a frequency table of the variable “polviews.”

e. Stop your log file by using “log off.”

f. Turn your log file back on.

g. Generate a frequency table of the variable “attend.”

h. Stop your log file by using “log close.”

i. Submit your log file as your answer to all parts of Question 2.

The Admitted Student Questionnaire (ASQ) is administered by colleges each year to its
incoming first-year students. The 2014 ASQ data set contains the responses from all students
who answered the questionnaire that year— more than 5,000. Use this data set to explore how
many colleges students applied to in the 2014–2015 academic year and to practice copying the
output for use in other documents.

a. Generate a table that shows the percentage of students that applied to one college, the
percentage that applied to two colleges, and so on for the 2014–2015 academic year. In
other words, generate a frequency table for the variable Q65.

b. Copy and paste that table into a Word document by highlighting the table, right clicking on
the table, and then selecting “Copy as picture.”

c. Change the font size of the output to fit it all on the results screen in Stata. To do this,
highlight the table, right click, and choose font. Then set the font to a smaller size (8 or 9)
so that the whole table fits on the screen.

d. If you are using a Windows operating system, copy the table you resized by using
Snipping Tool. To do this, open the Snipping Tool software, click on “New,” place the cursor



in the upper-left corner of the table, and then drag the cursor to the lower-right corner while
holding down the left button on the mouse. Then click on Ctrl + C to copy the table and
then Ctrl + V to paste it into a Word document.

e. If you are using a Mac operating system, select the content you want to copy by
highlighting it and then press Command + C simultaneously or choose Edit > Copy. To
paste the material, position the cursor where you want to paste it and press Command + V
simultaneously.

In the GSS2021 data set, one variable is “satjob.” Using this variable as an example, explain
the difference between a variable name, a variable label, and a value label.

KEY TERMS

closed-ended question

enumerators

Likert scale

open-ended question

skip patterns

Descriptions of Images and Figures
Back to Figure

The top of the screen includes the tabs: file, edit, data, graphics, statistics, user, window, and help. The
left of the screen shows the history and the right of the screen shows the variables including name,
label, type, format, value label, and notes.
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Washington College

Notes:

1. Unicode is supported; see help unicode_advice.

2. Maximum number of variables is set to 5,000 but can be increased;

see help set_maxvar.

. use "C:\Users\WAC\OneDrive - Washington College\Documents\Textbook - Second ed

> ition\Data and Do files 2e\GSS2021.dta"

Back to Figure

How often do you meditate? Freq. Percent Cum.
at least once a day 336 9.40 9.40
almost every day 402 11.25 20.65
once or twice a week 461 12.90 33.55
once or twice a month 343 9.60 43.14
a few times per year 374 10.46 53.61
once a year or less 204 5.71 59.32
never 1,454 40.68 100.00
Total 3,574 100.00  

.tab mditate1

Back to Figure

The data entered in the cells are as follows:

var1 var2 var3
1 1 1
2 1 1
3 2 1
4 1 1
5 3 1
6 5 2
7 1 1
8 2 1
9 2 1
10 2 1

On the right side, under the variables section, four checkboxes labeled "name," "var1," "var2," and
"var3" are checked. The type and format corresponding to "var1," "var2," and "var3" are set to "float"
and "%9.0g," respectively. Below that, from the list of variable properties (name, label, type, format,
value label, notes), the "value label" option is selected.

Back to Figure



The commands shown in the Do-file are as follows:

*Rename each variable

rename var1 id

rename var2 siblings

rename var3 hand

*Creating variable labels

label variable id "ID"

label variable siblings "Number of Siblings" label variable hand "Dominant Hand"

*Creating value leabels

label define hlabel 1 "Right" 2 "Left"

label value hand hlabel

*generating frequency tables

tab siblings

tab hand

Back to Figure

.tab siblings

Number of siblings Freq. Percent Cum.
1 4 40.00 40.00
2 4 40.00 80.00
3 1 10.00 90.00
5 1 10.00 100.00
Total 10 100.00  

.tab hand

Dominant Hand Freq. Percent Cum.
Right 9 90.00 90.00
Left 1 10.00 100.00
Total 10 100.00  

Back to Figure

The command reads as follows:

cd "c:\yourpath"

log using ".\gun log", text

tab gunlaw



log off

Back to Figure

The content reads as follows:

name: <unnamed>

log: c:\your path\gun log.log

log type: text

opened on: 29 May 2023, 12:11:42

. tab gunlaw

FAVOR OR OPPOSE GUN PERMITS Freq. Percent Cum.
Favor 2,686 67.28 67.28
Oppose 1,306 32.72 100.00
Total 3,992 100.00  

. log off

name: <unnamed>

log: c:\your path\gun log.log

log type: text

paused on: 29 May 2023, 12:11:42



5 PREPARING AND TRANSFORMING YOUR DATA



CHAPTER PREVIEW

Data Preparation Basics Examples
Checking for outliers

Codebook

Frequency tables

Descriptive statistics

Histograms

Creating new variables
Generate

Using operators

Recode

Egen

Missing values
Missing

Replace

5.1 INTRODUCTION
Whether you are using primary data that you collected yourself or secondary data, you will want to
spend some time “cleaning” your data. This involves checking all variables for missing data, errors, or
outliers. An outlier is an observation that lies extremely far from the mean or other values in a variable.
For example, if someone records that he or she is 125 years old or that he or she earns $25 billion, you
will want to investigate these numbers and possibly make some changes to the data. Or, if someone



records that he or she watches 24 hours of television a day on average, you know there must be a
mistake.

In addition to checking for missing data, errors, or outliers, you will also want to make new variables
using the existing data. This could involve adding several variables together or transforming a variable,
such as age, into categories or age ranges. You may also want to know how many people responded to
several different variables combined.

All of these procedures are covered in this chapter, along with documenting your work through the use
of do-files. Do-files are particularly important when cleaning a data set since you will need to keep track
of all changes that you make. In addition, before you begin cleaning your data, you should always make
an original copy of the file that will not be changed. This allows you to start over if you make any
mistakes as you modify the data.

5.2 CHECKING FOR OUTLIERS
As described in the introduction, outliers occur when a value is simply far outside of the range of other
observations. Because these extreme values will affect most of the statistics that we will learn about
later in this book, we need to identify outliers and then decide what to do with them.

One way to examine your variables and look for outliers is to use the command codebook. By typing
this into the Command Window or in a do-file, Stata will generate information about every variable in
your data set. Figures 5.1 and 5.2 give examples of two types of variables from the GSS2021 data set—
a continuous variable and a categorical variable, which are discussed in more detail in Chapter 6. In
Figure 5.1, you can easily see the age range of your respondents and the number of missing values.
The missing.: 0/4,032 tells you that there are zero missing values with no explanation out of 4,032
observations. The missing.*: 333/4,032 tells you that there are 333 answers that are missing with a
code for why they are missing. If you then examine the variable with the command or tab age, missing,
you can see that there are 107 responses listed as “no answer” and 226 listed as “iap,” or inapplicable,
leading to a total of 333 respondents who have no recorded answer.

Description

Figure 5.1 Codebook Output For Continuous Variable

In Figure 5.2, respondents are asked if they have confidence in the United States Supreme Court. In
this case, you can see that there are three possible answers. In addition, there are four codes for
missing values: don’t know (.d), inapplicable (IAP), no answer (n) and skipped on web (.s).



Description

Figure 5.2 Codebook Output For a Categorical Variable

In addition to the codebook, it is also useful to generate frequency tables for categorical variables with a
limited number of responses and descriptive statistics such as the mean and standard deviation for
continuous variables. Histograms are also useful to identify patterns in your data. All of these methods
are discussed further in Chapter 6.

Returning to the data set that we created in Chapter 4, where the respondents indicated the number of
siblings they have and their dominant hand, let’s suppose that we have one additional observation
whereby the 11th person accidentally entered 20 for the number of siblings and “3” instead of “1” or “2”
for right-handed and left-handed, respectively. Figure 5.3 shows the data editor screen for this data set.
Because there are only 11 observations, we could easily identify these errors by simply looking at the
raw data. With thousands of observations, however, we would need to examine the data using the
codebook, frequency tables, descriptive statistics, and histograms.

Description

Figure 5.3 Data Editor Screen Showing Errors In Data

Once we have identified these errors, we would need to make changes to the data set. If we don’t know
what the respondent intended to write for the number of siblings, then we would have to delete the
value. If we know that the respondent meant to type “2,” we could legitimately change this in our do-file.
The two commands would appear as follows:

replace siblings =. i f id==11 (to change the value to missing) 
replace siblings = 2 i f id==11 (to change the value to a 2)



In the first command, Stata changes the value in observation 11 to a “.” Indicating that the value is
missing and to a “2” in the second command. Although we could do this directly in the data editor
screen, it is better to record all changes in a do-file, as mentioned earlier. In addition to documenting all
changes, if we download a data set multiple times as new observations are added to an online
questionnaire, for example, it will have the same errors each time. By writing a do-file, we can correct
the errors each time by simply running the do-file.

Similarly, to change the number 3 in the 11th row to a 2 for the variable hand, we would write,

replace hand = 2 if id==11

Although researchers are tempted to simply remove all outliers, there are some basic rules regarding
when it is acceptable to drop an outlier and how it should be documented. If the outlier is a data entry
error, such as watching 24 hours of TV a day, then you can remove this since you know it is a mistake.
If, however, there is a legitimate outlier, such as $1 billion in a data set that asks for annual income, the
researcher could remove the outlier and include a footnote to indicate that this one observation was
removed.1

5.3 CREATING NEW VARIABLES
When you begin working with a data set, you will often want to create new variables. This can be done
in a number of ways. In this section, we will cover the following methods:

generate

recode

egen

5.3.1 Generate
The generate command is used to create a new variable. The Stata code for generate is as follows:

gen newvar = expression [if expression]

The command gen must be in lowercase, like all Stata commands, while “newvar” represents the new
variable being created. As discussed in the previous chapter, Stata variable names are case sensitive,
meaning that uppercase letters are considered different from lowercase letters. After defining the
variable, you must use the same capitalization whenever you refer to it.

The first “expression” in the code above is mathematical such as gen BMI = (weight/height^2)*703
which is the formula for Body Mass Index (BMI). If weight or height were missing for any given
observation, then the newly generated variable that uses these values would also be missing. If you
wanted to only calculate the weight of adults, you could add an “if expression” such as gen BMIAdult =
weight/height^2)*703 if age > 17. This new variable would skip respondents who are under 18. If,
however, age is missing, age is treated as the value of infinity and Stata will generate a BMI for that
respondent assuming they are an adult. This must be corrected as follows: gen BMIAdult2 =
weight/height^2)*703 if age > 17 & age !=. The “!=” means “not equal to” and lets Stata know to skip
any respondent that did not specify an age.



If the expression is an inequality such as gen adult = age > 17, then the new variable will take the value
of 0 if the expression is false and 1 if it is true. Just as in the case of the missing age above, Stata will
count the missing age as infinity and assign it a value of 1. Similarly, if you use the code gen adult2 = 1
if age > 17, Stata will count a missing age as infinity and assign a value of 1 to that case but list missing
values for anyone under 18. You can correct both of these as we did above by telling Stata to skip
missing values for age as follows: gen adult3 = age > 17 & age !=.

The do-file and corresponding data editor results that illustrate these concepts are shown in Figure 5.4.
Table 5.1 shows further examples of how to use the generate command.

Description

Figure 5.4 Do File and Data Editor Illustrating the Impact of Missing Values When
Generating New Variables Based on Existing Variables



Command Operation
gen
pctoffers=totoffers/applications*100

Creates a new variable that shows the percentage of job
offers someone receives as a proportion of their total
applications submitted.

gen salaryintern=beginningsalary if
internship==1 & beginningsalary !=.

Creates a new variable that shows the beginning salary for
a first job after college if the student had an internship. If
they did not, the value will be missing.

gen highprice = (price > 1000) &
price !=.

Creates a variable equal to 1 to indicate that the price is
greater than 1,000 and 0 to indicate that it is 1,000 or lower.

Source: Adapted from Minot (2012).

5.3.2 Using Operators
Operators are symbols used in equations, as shown in Table 5.1. Most of the operators are obvious
(e.g., + and −), but some are not. Table 5.2 lists the most commonly used operators. In Stata, you
cannot use words such as “or,” “and,” “eq,” or “gt.” Instead, you must use operator symbols.



Operator Meaning Example
+ Addition gen income = agincome + nonagincome
− Subtraction gen netrevenue = revenue - cost
* Multiplication gen value = price * quantity
/ Division gen exppc = expenditure/hhsize
^ Power gen agesquared = age^2
> Greater than gen aboveavg = 1 if income > avgincome
>= Greater than or equal to gen adult = 1 if age >= 18
< Less than gen belowavg = 1 if income < avgincome
<= Less than or equal to gen child = 1 if age <=10
= Assignment operator gen expend = foodexp + nonfoodexp
= = Equal gen femhead = 1 if sexhead= =2
!= Not equal gen error = 1 if value1 != value2
| Or gen age=. if age= =999 | age=9999
& And gen sexhead = 1 if sex= =1 & relation= =1

Source: Adapted from Minot (2012).

The most difficult rule to remember is when to use = (single equal symbol) and when to use = = (double
equal symbol).

Use a single equal symbol (=) when defining a variable.

Use a double equal symbol (= =) when you are testing an equality, such as in an “if” statement and
when creating a dummy variable, which are discussed in later chapters.



5.3.3 Recode
The recode command redefines the values of a variable according to rules that you specify. The
command is as follows:

recode varlist (oldvalues = newvalue) (oldvalues = newvalue) … [if exp] [in range]

Table 5.3 lists some examples of the recode command.

Command Operation
recode x (1=2) Within the x variable, all 1s become 2
recode x y z (1=2) (3=4) In variables x, y, and z, changes 1 to 2 and 3 to 4
recode x (1=2) (2=1) In the variable x, exchanges the values 1 and 2
recode x (1=2) (*=3) In the variable x, changes 1 to 2 and all other values to 3
recode x 1/5=2 In the variable x, changes 1 through 5 to 2
recode x y (1 3 4 5 = 6) In variables x and y, changes 1, 3, 4, and 5 to 6
recode x (.=9) In the variable x, changes missing to 9
recode x (9=.) In the variable x, changes 9 to missing

Source: Adapted from Minot [2012].

Notice that you can use some special symbols in the recode command:

* means all other values

x/y means all values from x to y

x y means values x and y

Figure 5.5 shows an example of creating a new variable using the recode command. Suppose that we
are interested in knowing the happiness level of someone who is currently married and living with his or
her partner versus someone who is not currently married nor living with his or her partner. Using the
GSS2016 data sets, we would first check the marital status variable, mar1, using a codebook mar1.
Notice that there are five categories: (1) married, (2) widowed, (3) divorced, (4) separated, and (5) never
married. Although we would assume that the labels are given values in the order from 1 to 5, it is always



important to check this to be sure before you recode. We would now generate a new variable,
“maritalstat,” that is identical to the original variable mar1. Then, we begin the recoding process
indicating that values 2 through 5 will all be equal to 2. Finally, we give new value labels to the variable
showing that “1” is married and “2” is not currently married or living with a spouse.2

Description

Figure 5.5 Example of the Recode Command

5.3.4 Egen
The egen command is an extended version of the generate command. It is used to create a new
variable by aggregating the existing data. The command is as follows:

egen newvar = fcn(argument) [if exp] [in range], by(var)]

where

newvar is the new variable to be created

fcn is one of numerous functions such as

count() max() min()

mean() median() rank()

sd() sum() rowtotal()

(See help egen for the full list.)

argument is normally just a variable or a variable list

var in the by() subcommand must be a categorical variable



Table 5.4 gives a few examples of the egen command using the mean, median, and sum functions.

Command Operation
egen avgincome = mean(income) Creates a variable of average income over the entire

sample.
by region: egen regincome =
median(income)

Creates a variable of median income by region.

by household: egen hhincome =
sum(income)

Creates a variable of total income for each household.

Source: Adapted from Minot (2012).

Figure 5.6 shows another example of the egen command. Using the 2014 Admitted Student
Questionnaire data set (2014 ASQ Data), we may want to know how much emphasis students place on
academics versus social life when choosing a college. Questions QA1, QA2, and QA3 ask students
whether the quality of the faculty, majors of interest, and academic reputation are very important (= 1),
somewhat important (= 2), or not important (= 3). Questions QA11, QA12, and QA14 ask about the
importance of extracurricular opportunities, off-campus activities, and quality of social life using the
same scale of very, somewhat, and not important. As shown in Figure 5.6, we first generate two new
variables using the egen command—academic and social. For the academic variable, egen counts the
number of times variables QA1, QA2, and QA3 are given a value of “1” or very important.



Description

Figure 5.6 Example of the Egen Command

A frequency table of this variable shows that 3,278 students, or 56%, ranked all three questions related
to academics as very important. Using the same method for the “social” variable, the frequency table for
“social” shows that only 1,175 students, or 20%, ranked all three variables related to social activities as
very important. Based on this sample, students do place more emphasis on academic reputation than
on social life.

5.4 MISSING VALUES IN STATA
Missing values are represented as a “.” or as “.a,” “.b,” “.c,” … “.z” in Stata. As we saw earlier in the
codebook, users can also specify multiple codes for missing such as “don’t know,” “not applicable,” or
“refused to answer.” Most commands ignore missing values by default. Some commands, such as
tabulate, have an option to display missing values if you want to see how many observations are
missing. This would be done using the code tab mar1, missing.

In some cases, you may use missing values in a way that you did not intend. For example, the replace
command does not ignore missing values, so you must take them into account when you replace
variables using a > (greater than) function as you may inadvertently replace missing values.



When there are missing values, statistical packages may eliminate that entire case (or row) from the
data set. This is called a “listwise” deletion. In other cases, “pairwise deletion” is done, which eliminates
a case only when it is missing a variable required for a particular analysis. In the case of Stata, the
default is pairwise deletion.

Researchers will also use imputation, which is the practice of replacing missing data with other values.
One common method is to substitute the mean value of a variable for any observation that is missing.
This is a somewhat controversial procedure and is considered inappropriate by many researchers. For a
more thorough discussion of how to deal with missing data, refer to Enders (2010), Little and Rubin
(2014), or Sauro (2015).

5.5 SUMMARY OF COMMANDS USED IN THIS CHAPTER
As described in Chapter 4, this last section of each chapter summarizes all of the Stata code used in the
chapter (Table 5.5). In addition, all Stata code used throughout the book is summarized in Appendix 1.



Function CommandFunction Command
Looking for outliers and
missing data codebook

tab age, missing

Replacing or removing data
replace siblings =. if id==11 (to change the value to missing)

replace siblings = 2 if id==11 (to change the value to a 2)

replace hand = 2 if id==11

Creating new variables
gen pctoffers=totoffers/applications*100

gen salaryintern=beginningsalary if internship==1 & beginingsalary
!=.

gen highprice = (price>1000) & price !=.

gen income = agincome + nonagincome

gen netrevenue = revenue – cost

gen value = price * quantity

gen exppc = expenditure/hhsize

gen agesquared = age^2

gen aboveavg = 1 if income > avgincome

gen adult = 1 if age >= 18

gen belowavg = 1 if income < avgincome

gen child = 1 if age <=10

gen expend = foodexp + nonfoodexp

gen femhead = 1 if sexhead==2

gen error = 1 if value1 != value2

gen age=. if age==999 | age=9999

gen sexhead = 1 if sex==1 & relation==1



Function Command
Recoding existing variables

recode x (1=2)

recode x y z (1=2) (3=4)

recode x (1=2) (2=1)

recode x (1=2) (*=3)

recode x 1/5=2

recode x y (1 3 4 5 = 6)

recode x (.=9)

recode x (9=.)

recode mar1 2/5=2, generate(maritalstat)

Working with labels
label define marlabel 1 “Married” 2 “Not currently married or living
with spouse”

label value maritalstata marlabel

Aggregating existing data
by region: egen avgincome = mean(income)

by region: by household: egen regincome = median(income)

by household: egen hhincome = sum(income)

EXERCISES
1. To examine the age when someone first tried smokeless tobacco, use the “National Survey on Drug

Use and Health, 2015” data set to complete the following exercises.
a. Generate a table of the age when someone first tried smokeless tobacco (smklsstry).
b. Generate a new variable that is identical to smklsstry and call it smklssage.
c. Recode smklssage so that the codes 994, 997, and 998 are blank.
d. Recode smklssage so that you combine users into the following categories: never used

smokeless tobacco, <10, 10 to 12, 13 to 15, 16 to 18, 19 to 21, and >21.
e. Generate value labels for these age groups, and apply them to smklssage.
f. Generate a table of smklssage, and notice the label that is in the left column of the table at the

top.
g. Create a variable label “Age when first tried smokeless tobacco,” and apply this to smklssage.
h. Generate a table of smklssage again, and notice the change in the label above the left-hand

column.
2. Use the GSS2021 data set to complete the following exercises that generate a categorical variable

out of a continuous variable.
a. Generate a table of how many children a respondent has (childs).



b. Generate a new variable that is equal to 1 if the respondent has any children and 2 if the
respondent has no children.

c. Create a variable label “Respondent has children,” and apply it to your new variable.
d. Create value labels so that 1 is “Yes” and 2 is “No.”
e. Generate a table of your new variable.

3. Use the GSS2021 data set to complete the following exercises related to regional income
disparities in the United States.

a. Use the egen command to generate a variable that is the median value of real income (realinc)
of all respondents in the data set.

b. Generate a new variable that is the difference between an individual’s real income (realinc) and
the median income of all individuals (the variable you created in Part A).

c. Generate a new variable that is equal to 1 if an individual earns above the median income and
0 if the individual earns below the median income.

d. Define and apply value labels to the variable you created in Part C.
e. Create a table that shows region of the United States in the rows and the variable you created

in Part C in the columns. Have this table add across the rows and include no frequencies.
f. In a couple of sentences, describe the results and their meaning.

KEY TERMS

cleaning data

histograms

imputation

observation

outliers

Descriptions of Images and Figures
Back to Figure

The command reads as follows:

. use "$datapath\G552021"

.

. *Output 5.1

. codebook age

age AGE OF RESPONDENT

Type: Numeric (byte)

Label: AGE, but 71 nonmissing values are not labeled

Range: [18,89] Units: 1

Unique values: 72 Missing .: 0/4,032

Unique my codes: 2 Missing .*: 333/4,032



Examples: 36

49

61

73

Back to Figure

The command reads as follows:

. codebook conjudge

conjudge CONFID. IN UNITED STATES SUPREME COURT

Type: Numeric (byte)

Label: INSTCONF

Range: [1, 3] Units: 1

Unique values: 3 Missing .: 0/4,032

Unique my codes: 4 Missing .": 1,370/4,032

Tabulation: Freq. Numeric Label
689 1 a great deal
1,437 2 only some
536 3 hardly any
3 .d don’t know
1,360 .i iap
1 .n no answer
6 .s skipped on web

Back to Figure

The data entered in the cells are as follows:

ID siblings hand
1 1 Right
2 1 Right
3 2 Right
4 1 Right
5 3 Right
6 5 Left
7 1 Right
8 2 Right
9 2 Right
10 2 Right
11 20 3



On the right side, the tab “Variables” is selected. The variable properties displayed are as follows:

Namehand

LabelDominant Hand

Typefloat

Format%9.0g

Back to Figure

The command in the Do-file editor reads as follows:

1 *Mathematical statement 2

2 *If height or weight is missing, BMI is missing.

3 gen BMI = (weight/height^2)’703

4

5 *Mathematical statement with if statement

6 *If age is missing, age counts as infinity and that respondent is included as an adult

7 gen BMIAdult = (weight/heightA2)*703 if age > 17

8

9 *Let Stata know that missing values should not be counted as follows:

10 gen BMIAdult2 = (weight/height"2)703 if age > 17 & age !=.

11

12 *Inequality

13 *counts "." as infinity and returns 0 if false and 1 if true

14 gen adult = age > 17

15

16 ‘Equality with if statement

17 *Counts "." as infinity and respondents who do not specify and age will be counted as an adult.

18 *Returns 1 if true and "." if not true

19 gen adult2 = 1 if age > 17

20

21 *Inequality that rules out missing

22 *Returns 1 for adults and "." for non-adults and respondents that do not report an age.



23 gen adult3 = 1 if age > 17 & age !=.

The data in the data editor is as follows:

age weight height BMI BMIAdult BMIAdult2 adult adult2 adult3
2 15 24 18.30729 . . 0 . .
4 . 70 . . . 0 . .
24 145 70 20.80306 20.80306 20.80306 1 1 1
28 . 62 . . . 1 1 1
. 195 71 27.19401 . . 1 1 .

Back to Figure

The command reads as follows:

. codebook marital

marital MARITAL STATUS

Type: Numeric (byte)

Label: MARITAL

Range: [1,5] Units: 1

Unique values: 5 Missing .: 0/4,032

Unique mv codes: 3 Missing .*: 9/4,032

Tabulation: Freq Numeric Label
1,999 1 married
301 2 widow
655 3 divorced
9 4 separated
972 5 never married
1 .d don’t know
1 .n no answer
7 .s skipped on web

. gen maritalstat = marital

(9 missing values generated)

. recode maritalstat 1/4=1 5=2

(2,024 changes made to maritalstat)

. label define marlabel 1 "Married at some point" 2 "Never married

. label value maritalstat marlabel

. tab maritalstat



maritalstat. Freq. Percent Cum.
Married at some point 3,051 75.84 75.84
Never married 972 24.16 100.00
Total 4,023 100.00  

Back to Figure

The command reads as follows:

. egen academic = anycount (QA1 QA2 QA3), values (1)

. egen social = anycount (QA11 QAl2 QA14), values (1)

. tab academic

QA1 QA2 QA3

==1

Freq. Percent Cum.

0 95 1.63 1.63
1 548 9.43 11.06
2 1,893 32.56 43.62
3 3,278 56.38 100.00
Total 5,814 100.00  

.tab social

QA11 QA12 QA14

==1

Freq. Percent Cum.

0 1,320 22.70 22.70
1 1,680 28.90 51.60
2 1,639 28.19 79.79
3 1,175 20.21 100.00
Total 5,814 100.00  



6 DESCRIPTIVE STATISTICS



CHAPTER PREVIEW

Descriptive Statistics
Basics Example

What are descriptive
statistics? A summary or description of data

Based on a sample or a population

Used to describe a sample or population, to answer research
questions, to check violation of assumptions, and to look for
outliers

Types of variables and
measurement Categorical—nominal and ordinal

Continuous—interval and ratio



Descriptive Statistics
Basics Example

Descriptive statistics for
all variables Frequency tables

Mode

Descriptive statistics for
ordinal, interval, and ratio
scales

Median

Percentile

Descriptive statistics for
interval and ratio scales Mean

Variance

Standard deviation

Coefficient of variation

Descriptive statistics for
nominal scales

Cross tabulation

Graphs to describe data
Bar

Box plot

Histogram

Pie

6.1 INTRODUCTION
Descriptive statistics are used to describe or summarize data. For example, you may want to know the
average age of the respondents in a study or the range of the respondents’ ages. You may also want to
know the percentage of respondents by gender. In some cases, you may have access to the data for an
entire population, in which case descriptive statistics are used to describe the population. A census of
the population, for example, is conducted every 10 years in many countries. Generally, however,
descriptive statistics are based on a sample of a larger population. If you are conducting a survey of 300
students in a college where there are 1,500 students, for example, then descriptive statistics will
describe that sample. They cannot be used to make generalizations or inferences about the population
without further analysis or testing. We will learn how to test hypotheses and make inferences about the
population in later chapters. In addition to describing data, descriptive statistics are used to answer
research questions, to check for violations of assumptions, and to look for outliers. Before we cover
descriptive statistics and how to use them, however, we need to know about the different types of
variables and measures since this will affect which descriptive statistics can be used.

6.2 TYPES OF VARIABLES AND MEASUREMENT



In statistics, a variable is defined as a number or characteristic that can be measured and that varies
over a sample or population. For example, age, income, gender, and political affiliation are variables that
can be measured. Variables can be divided into two major categories: (1) categorical and (2)
continuous. Within these two categories, there are different scales of measurement as illustrated in
Table 6.1. These distinctions are important since they affect the type of analysis that can be done with
each variable.

Variable
Type Categorical Continuous

Scale of
Measurement

Nominal Ordinal Interval Ratio

Definition A measure
with two or
more
categories
that do not
have a natural
order

A measure with two or more
categories that can be
ranked or ordered, but the
distance between categories
can’t be measured precisely

A measure that
has a numerical
value, and the
magnitude
between intervals
is the same

A measure that
is the same as
an interval
measure, but it
also has a true
zero value



Variable
Type Categorical Continuous

Example
Gender

Race

First language

Military rank

Education level (primary,
some secondary, high
school, etc.)

Economic status (low-,
middle-, or high-income)

Temperature in
Fahrenheit

Date

Time of day

Income (exact
dollar amount)

Weight

Sales

Frequencies ✓ ✓ ✓ (when limited #
of values)

✓ (when limited
# of values)

Mode ✓ ✓ ✓ ✓
Median,
percentiles

✓ ✓ ✓ ✓
Mean,
variance,
standard
deviation

✓ ✓ ✓ ✓

Cross-
tabulation

✓ ✓ ✓ ✓
Bar graph ✓ ✓ ✓ ✓
Box plot ✓ ✓ ✓ ✓
Histogram ✓ ✓ ✓ ✓
Pie chart ✓ ✓ ✓ ✓

A categorical variable is a variable that has a limited number of possible values that fall into categories
based on some qualitative property or quantitative ranges, such as 1 to 5, 6 to 10, and so on. It can be
measured on a nominal or ordinal scale. A nominal scale is a measure with two or more categories that
do not have a natural order. For example, gender, political affiliation, and first language are categorical
variables measured on a nominal scale. An ordinal scale is a measure with two or more categories that
can be ranked or ordered, but the distance between the categories can’t be measured precisely. For
example, education level could be measured as completion of grade school, some high school, high
school, some graduate school, and so on. Although these can be ordered from the lowest to the highest
level, the difference between each level is not precise or the same.

A continuous variable is often described as a variable that can take on an infinite or large number of
possible values, such as temperature, age, and weight. It can be measured on an interval or ratio scale.
An interval scale is a measure that has a numerical value, and the magnitude between the intervals is
the same. Temperature, date, and the time of day are examples of variables measured on an interval
scale. A ratio scale is a measure that is the same as an interval measure, but it also has a true zero
value or a complete absence of what is being measured. For example, when income or sales is zero, it
means that there is no income or sales. For interval measures, however, you can’t say that there is a
zero time of day or a zero date.

Many questionnaires use a 5-point Likert-type scale with the categories of “strongly agree,” “agree,”
“neutral,” “disagree,” and “strongly disagree.” This is considered an ordinal scale since the responses
can be ranked from the lowest to the highest. Researchers sometimes consider this an interval scale,
which assumes that the distance is equal between each category. This practice is controversial since
the distance between each category may not be identical, and it is subject to the interpretation of each



respondent. Some statistical guides suggest that a higher number of categories (11 or more) would be
sufficient to consider it an interval scale. The reason why this is important is because you can’t calculate
the mean or variance of an ordinal scale, but you can with an interval scale. If you can calculate the
mean and the variance, it allows you to do more in-depth statistical tests.

The types of descriptive statistics that can be calculated for each type of variable are described in the
following sections, followed by a section on using graphs to describe data.

6.3 DESCRIPTIVE STATISTICS FOR ALL TYPES OF
VARIABLES: FREQUENCY TABLES AND MODES
All variables, regardless of their scale of measurement, can be examined with a frequency table or the
mode. Each of these is described below.

6.3.1 Frequency Tables
When using a new data set, researchers often begin by generating frequency tables to examine the
distribution of each variable. Using the “College Scorecard April 23 - USNews” data set, we can
generate a frequency table of the variable inst_type to see how many colleges fall into the three
categories of private not-for-profit, public, and private for-profit using the code tab inst_type as shown
in Figure 6.1. This can also be done using menus by clicking on the following sequence: Statistics →
Summaries, tables, and tests → Frequency table → One-way table

Figure 6.1 Frequency Table of College Types

The frequency and percent columns in Figure 6.1 show the actual number and percentage of each type
of college in the data set. The cumulative column adds up the percentages from the percent column, but
for a nominal variable, this doesn’t make any sense. For example, you can’t report that 97.91 colleges
are less than private nonprofit colleges. If, on the other hand, we generated a frequency table for a
continuous variable, such as the number of students enrolled in colleges, we could report that 50% of
colleges have less 2,302 students.

If we wanted to generate frequency tables for multiple variables, we could use the Stata command tab1
and then list the variables following the command. For example, we could type tab1 region admcon7,
sort to show the percentage of colleges in each region in the country followed by a table that shows the
percentage of colleges that require standardized testing as illustrated in Figure 6.2. The sort command



will sort the frequencies in the table from largest to smallest. Using tab1 eliminates the need to type tab
multiple times on separate lines. This is not possible using menus.

Figure 6.2 Multiple Frequency Tables Using The Tab1 Command

Notice that in the table of admissions test score policies, the total number of colleges reporting their
policy is 1,259 compared with 1,484 in the first table that lists the region of each college. If we wanted to
include the number of missing values in the table, we could add “, missing” at the end of the command
that generates a table. Generally, when a variable has missing data, it is important to identify patterns or
reasons for the missing data. It could be due to respondents who refuse to answer a question or a skip
pattern in a survey where only certain individuals are asked questions. For example, a survey may ask
some questions only to individuals who work full time. There are many reasons why there might be
missing observations and several ways to deal with missing data. A more advanced book on statistical
analysis would cover these methods, and there are entire books written just about this problem. For a
brief guide, Sauro (2015) suggests “7 Ways to Handle Missing Data.” For a complete overview of
missing data, refer to Enders (2010) and Little and Rubin (2014).

In the previous illustration, we used a categorical variable with only three categories. If we generated a
frequency table for a continuous variable, such as the number of students enrolled in colleges using the
variable “ugds” from the College Scorecard April 2023 - USNews data set, there would be close to 1,480
lines in our frequency table, or one for each unique value. You may want to do this if you are looking for
outliers, but in general, you would never include a frequency table with a large number of possible
values in a report. In this example, a table with 1,480 lines would run over several pages and provide
limited useful information. A summary of the variable (mean, median, and standard deviation) or a box
plot (described at the end of this chapter) would be more appropriate.

Finally, it is important to think about labeling tables with appropriate titles and sources. The title should
indicate the statistic, the variable, and possibly the unit. A source should be listed at the bottom of the



table if the table is taken from another article or if you want to cite the source of the data. One rule of
thumb is that a table should be self-explanatory without any accompanying text.

6.3.2 Mode
The mode is the most common value in a variable. It can be used for both categorical and continuous
variables. In some cases, there may not be a mode if all values appear once or the same number of
times. In other cases, you could have a bimodal or multimodal distribution whereby there is more than
one mode. Although the mode is sometimes called a “measure of central tendency,” the mode could be
at the low or high end of the distribution of a variable.

The easiest way to find a mode is to look at a frequency table and see which value appears most
frequently. When a frequency table is too long to easily find a mode or multiple modes, however, you
can use the Stata egen command that was covered in Chapter 5. In this case it would be egen mode =
mode(ugds) if we wanted to determine the mode for size among U.S. colleges in the College Scorecard
April 23 - USNews data set. If there were multiple modes, Stata would indicate this after running the
command.1

6.4 DESCRIPTIVE STATISTICS FOR VARIABLES MEASURED
AS ORDINAL, INTERVAL, AND RATIO SCALES: MEDIAN
AND PERCENTILES

6.4.1 Median
In addition to frequency tables and the mode described previously, variables that are measured on an
ordinal, interval, or ratio scale can be examined with the median and percentile values. A median is
found by ranking a variable from its lowest to its highest value and then identifying the observation or
number that falls exactly in the middle. If there is an odd number of observations for the variable, then
there will be one number that represents the middle value. If there is an even number of observations,
then you would use the average of the two middle values.

As described later in the section on means, it is often useful to calculate both the mean and the median,
particularly when there are outliers. A mean or average will be skewed in one direction if there is a small
number of unusually high or low values. A full example of this is given in Section 6.5.

6.4.2 Percentiles
A percentile is a value below which a percentage of the data falls within a variable. For example, if your
Scholastic Aptitude Test (SAT) percentile was 85, then 85% of all students who took the test earned a
lower score than you. Because the median is the exact middle value of a variable, the median is the
50th percentile.

To find the median and several percentiles for the size of a college in the College Scorecard April 23 -
USNews data set, we would use the code sum ugds, detail as shown in Figure 6.3, or we could do this
with menus by clicking on the following sequence:

Statistics → Summaries, tables, and tests → Summary and descriptive statistics → Summary



Figure 6.3 Percentiles And Median

The first two columns in Figure 6.3 show the percentile and the value for each percentile. For example,
the 90th percentile is 14,318.5 indicating that 90% of all colleges have fewer than 14,318.5 students.
The median, or 50th percentile, is 2,302. The third column shows the four smallest numbers in the
variable and the four largest. Finally, the last column shows the number of observations and the mean,
along with other descriptive statistics that we will cover later.

Because there may be outliers in the data set, it is often common to consider the interquartile range,
which is the range between the 25th and the 75th percentile. In Figure 6.3, for example, we see that the
four smallest values seem unrealistically small, and we may want to examine them to be sure that there
wasn’t a data entry error. Similarly, the largest college reported 119,248 students! The interquartile
range tells us that 50 percent of all colleges fall within 1,151 and 6,027 students, which helps eliminate
the extreme outliers when examining school size.

6.5 DESCRIPTIVE STATISTICS FOR CONTINUOUS VARIABLES:
MEAN, VARIANCE, STANDARD DEVIATION, AND COEFFICIENT
OF VARIATION
In addition to frequency tables, modes, medians, and percentiles, continuous variables (those measured
on the interval and ratio scale) can be examined using the mean, variance, standard deviation, and
coefficient of variation. The methods to calculate these statistics are described below.

6.5.1 Mean
The calculation of the mean or average is expressed mathematically in Equation 6.1.



(6.1)

X =

∑

n

i=1

x

i

n

where x is the value of each individual observation of the variable and n is the number of observations
or values of the variable.

For those of you not familiar with the summation sign, ∑, it is a symbol that indicates that you should
add the values indicated by what lies to the right of the symbol. The symbols “i = 1” and “n” in the
numerator indicate that you begin with the first observation of variable x and add each successive value
together until you reach the last value or the nth unit. Finally, you divide this by n, or the total number of
observations. For example, if there are five values of x, Equation 6.2 shows the long form of the
equation:

(6.2)
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∑
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+ x
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+ x
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+ x

4

+ x

5

5

In this example, X represents a sample mean and is called a statistic. If we had information about each
observation in a population, we would calculate the population mean and use the Greek letter mu μ to
represent it. In this case, μ is a parameter since it describes the entire population.

Although an average is a commonly used statistic, it is often useful to calculate both the mean and the
median, which was discussed in the previous section. The median is particularly useful when there are
outliers or extreme values in a variable. Income is a classic example since a billionaire in the data set
will skew the average to a higher value than is typical for a household. By calculating a median or
middle value instead, it offers a much better picture of income for typical households in the middle of the
income range.

To show the difference in the mean and median, suppose that we have a sample with five respondents
and we ask their age. We receive the responses of 20, 25, 35, 40, and 95. Table 6.2 shows the results
for the two measures. Although four of the five respondents are 40 years or younger, the mean indicates
that the average age of the person in the sample is 43. The median, 35, on the other hand, gives a
better idea of someone in the middle of the group.



Measure Calculation Example Result
Mean Sum of all observations divided by the number of

observations
20+25+35+40+95

5

43

Median Observation that falls in the middle when ranked from low to
high

20, 25, 35, 40,
95

35

As shown in Figure 6.3 earlier, the mean can be generated through Stata using the summarize
command. Also, if you want to display less information than in the summarize variable, detail
command, you can use the summarize command without the detail option. This is illustrated in Figure
6.4.

Figure 6.4 Mean Of College Size

There are many times when a researcher may want to examine the mean or the median for subgroups.
For example, we can generate the average and median college tuition cost for three categories of
college types in Figure 6.5 by using the code table inst_type, stat(mean costt4_a) stat(median
costt4_a) nformat(%6.0fc) as illustrated in Figure 6.5.



Figure 6.5 Means And Medians For Subcategories

The three forward slashes “///” in the command are used in a do-file to let Stata know that the command
continues on the next line and can only be used in do-files. The last command, nformat(%6.0fc),
indicates that you want to format the numeric output so that there are six characters in total (including
the comma) and zero numbers to the right of the decimal point. The “fc” stands for fixed numeric
variable with commas. If you wanted to add two numbers to the right of the decimal place, the command
would be nformat(%9.2fc). Notice that the “6” changes to “9” to allow six characters to the left of the
decimal place, the decimal point, and two digits to the right of the decimal place. Using menus to
generate the same result, you would click on the sequence: Statistics → Summaries, tables, and tests
→ Other tablese → Flexible table of summary statistics

Overall, the output shows that private nonprofit colleges have the highest average and median tuition
costs.

6.5.2 Variance and Standard Deviation
Variance is a measure of how spread out the values of one variable are from their mean. Table 6.3
shows the formulas to calculate the variance for a population and the variance for a sample of a
population.

Population Variance Sample Variance

σ
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=

∑

N
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(X

i

−μ)

2
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where

N = number of units in the population

x = value of each individual observation of the
variable

μ = the population mean

s

2

=

∑

n
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(X

i

−X)

2
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where

n = number of units in the sample

x = value of each individual observation of the
variable

X = the sample mean

In the numerator for both measures, the average is subtracted from each value in the variable. The
differences are then squared and added together. In other words, it is measuring how far each value
falls from the mean. Notice the difference in the denominators. For the population variance, the
denominator is the number of units in the population. When you work with a sample, you are estimating
the variation in the population. Because the sample will not be a perfect representation of the
population, the measure adjusts for this difference by dividing by “n − 1.” The standard deviation is
simply the square root of the variance.



To show how the variance and standard deviation work, let’s suppose that we have two variables with
three observations that represent a sample of a population. Table 6.4 shows the three observations for
each variable, the calculation of the variance, and the resulting variance and standard deviation. As you
can see, the first variable is made of three observations that are identical: 50, 50, and 50. There is no
variance in these numbers, and the resulting variance and standard deviation are zero. In Variable B,
however, there is a large variation in the three observations and thus a very large variance of 2,500 and
a standard deviation of 50.

Variable Observations Variance Calculation Variance Standard Deviation
A 50, 50, 50 (50−50)

2

+(50−50)

2

+(50−50)

2

3−1

0 0

B 0, 50, 100 (0−50)

2

+(50−50)

2

+(100−50)

2

3−1

2,500 50

Using the College Scorecard April 23 – USNews data set, we can examine college debt with the Stata
command table inst_type, stat(mean grad_debt_mdn) stat(sd grad_debt_mdn) or using the
following sequence in the menus: Statistics → Summaries, tables, and tests → Other tables → Flexible
table of summary statistics

The results in Figure 6.6 show the mean and standard deviation for colleges in the three categories of
public, private nonprofit, and private for-profit universities. As you can see from the output, the debt at
private for-profit universities has the highest median student debt upon graduation, but the private
nonprofit universities have a higher standard deviation of the median debt upon graduation. To compare
how much they vary relative to their mean, the coefficient of variation is often used.

Figure 6.6 Mean And Standard Deviation Of College Debt By Type Of Institution

6.5.3 Coefficient of Variation



The coefficient of variation, or CV, is calculated as the standard deviation divided by the absolute
value of the mean and multiplied by 100 as shown in Equation 6.3. In other words, it tells us how much
variation there is in a variable relative to its mean. Using the data from Figure 6.6, the CVs would be 51,
49, and 46 for public, private nonprofit, and private for-profit universities, respectively. Thus, we could
say that the standard deviation for public universities is 51% of its mean and has the largest variation
among the three categories.

(6.3)

CV =

s

X

*100

In a recent news story about fantasy basketball, the CV of basketball players’ performance (points per
game) is compared to see which players are “safer.” In other words, a low CV would imply that a player
consistently scores close to his or her average, whereas a high CV would suggest that the player’s
points per game vary widely (Daily Fantasy Sports Rankings, 2018).

In general, the CV is useful because the size of the standard deviation depends on the units used to
measure a variable. For example, if a variable that asked for someone’s age is measured both in years
(e.g., 4 years and 2 months old) and in total months (50 months), the standard deviation will differ as
illustrated in Table 6.5. Notice that the standard deviation for age in months is exactly 12 times the
standard deviation for the age in years. If you just looked at the standard deviation, it would look like age
in months has much greater variation than age in years. But the CVs show that they have the exact
same variation relative to their mean. The CV is also useful since it allows you to compare two variables
with different measurements, such as years of education and income in dollars, to determine which one
has greater variation relative to its mean.

 Age in Years Age in Months
Observations 2 24
 4 48
 6 72
Mean 4 48

∣ ∣



 Age in Years Age in Months
Standard deviation 2 24
Coefficient of variation 0.5 0.5

6.6 DESCRIPTIVE STATISTICS FOR CATEGORICAL VARIABLES
MEASURED ON A NOMINAL OR ORDINAL SCALE: CROSS
TABULATION
In addition to frequency tables and modes, categorical variables can be examined with cross-tabulation,
which is also referred to as a crosstab or a contingency table. This is defined and illustrated next.

A cross-tabulation allows you to combine two categorical variables to learn more about their
relationship or their joint distribution. For example, to show the percentage of colleges that require or
recommend the SAT by each type of college as illustrated in Figure 6.7, we would use the commands
tab inst_type admon7, row or the following sequence if using menus: Statistics → Summaries, tables,
and tests → Frequency table → Two-way table with measures of association

Figure 6.7 Combining Two Categorical Variables Using The Tabulate Command

Within each cell, the numbers on top are the actual number of colleges in that category and the number
below is the percentage. By including the command row in the Stata command, the percentages add up
across the rows to 100%. For example, we can see on the first row that 59 public universities neither
recommend nor require the SAT or ACT, which represents 13.32% of all public universities.

If we changed Figure 6.7 and wrote the Stata commands to add up over the columns, we would use the
commands tab inst_type admcon7, col. The output from these commands would not make sense, as
shown in Figure 6.8. Notice that the private nonprofit universities represent the largest percentage in
each column, with the exception of the first column. This is because they are the largest group. Instead,
you would want to know what percentage of colleges within each type require or do not require the SAT
or ACT.



Figure 6.8 Incorrectly Adding Up A Cross Tabulation Over The Wrong Variable

There are times when you may want to examine both row and column percentages for the same set of
two variables. In many cases, however, you would only examine percentages that add up across the
independent variable. As described in Chapter 1, an independent variable is defined as a variable
whose variation is not influenced by other variables, whereas a dependent variable is influenced by
other variables. In this example, large public universities are likely to require the SAT, in contrast to small
liberal arts colleges that may not. So the SAT policy (dependent variable) is dependent on the type of
college (independent variable). We would therefore add up across the type of college. So if the type of
college is the row variable, we would generate a row percentage. If the type of college was placed in the
columns, we would generate a column percentage.

A second rule of thumb that is sometimes followed is to place the dependent variable in the rows and
the independent variable in the columns. If, however, there are far more categories in the independent
variable and the table can’t fit on a page without wrapping around, it is fine to switch the placement of
the two types of variables but always add up over the independent variable.

One last word on cross tabulation is that you can use a continuous variable in a cross-tabulation if you
transform it into categories using the recode command discussed in Chapter 5. For example, if one of
your continuous variables is income in exact dollar amounts, you could change this into a categorical
variable by making the categories of below 50,000, 50,000 to 99,999.99, 100,000 and above, and so on.

6.7 APPLYING SAMPLING WEIGHTS
In Chapter 2, we described how sampling weights are used to extrapolate information from the sample
to the population. If a sample is stratified or is drawn by using a multistage process, then some types of
units will be overrepresented and others underrepresented in the sample. Returning to the example
from Chapter 2, suppose that the population is 10% urban and 90% rural, but the sample is split 50–50



between urban and rural households. This means that urban households are overrepresented in the
sample, so any statistics calculated from the sample will be disproportionately affected by the urban
households. Sampling weights compensate for the distortions introduced by sampling, allowing us to
calculate means and percentages from the sample that are unbiased estimates of the population
statistics.

We demonstrate the use of sampling weights with data from the 2021 General Social Survey (GSS). In
particular, we can explore the relationship between health (health) and happiness (happy). Without
weights, we would use the commands tab health happy, row nofreq. With weights, we would change
the code to tab health happy [aw=wtssps], row nofreq, where “aw” stands for analytical weights and
“wtssps” is the name of the variable that contains the weights for each observation and “nofreq” means
that we only want to see percentages and not the frequencies or counts.

First, comparing Figure 6.9 with no weights and Figure 6.10 with weights shows that the weights do not
have a large impact on the results in this data set. This suggests that any over- or undersampling of
different groups in the United States was only minor. Nonetheless, if you are generating descriptive
statistics from a survey for which sampling weights are available, you should make use of those weights.

Figure 6.9 Relationship Between Health And Happiness Without Sampling Weights

Figure 6.10 Relationship Between Health And Happiness With Sampling Weights

The output in both tables also shows that there appears to be a correlation between health and
happiness. As illustrated in Figure 6.10, among people with poor health, the largest percentage report
that they are not too happy (57%) compared to respondents in excellent health, where only 13% report
being not too happy.



6.8 FORMATTING OUTPUT FOR USE IN A DOCUMENT (WORD,
GOOGLE DOCS, ETC.)
As you will notice in the output in the previous sections, the formatting of the tables is not always ideal.
The value labels start with lowercase letters, some labels are too long and are cut off, other labels have
abbreviations that might not be clear to the reader, and so on. For this reason, you may want to edit the
table before placing it in a Word or Google document. In addition, if you are publishing your work in a
journal, many journals prefer only horizontal lines. All of this editing can be done by highlighting the
table in the Stata results screen and then clicking edit/copy table. You can then copy this into an Excel
file where you could format each part of the table as needed. Finally, the Excel table can be copied into
Word or a Google Doc. To do this, you need to select the table, right-click, and then select “copy table.”

6.9 GRAPHS TO DESCRIBE DATA
In addition to tables with data, charts or graphs are often useful to display information. In some cases, it
is easier to see a pattern with a graph. Although there are many types of graphs, we illustrate four of the
most common—bar graphs, box plots, histograms, and pie charts.

6.9.1 Bar Graphs
Using the same data from the previous sections, College Scorecard April 23 – USNews, we can
generate a bar graph of the average tuition rate by the type of university (Figure 6.11) using the Stata
command or following this sequence using the menus: Graphics → Bar chart → Other tables → Flexible
table of summary statistics. Notice that the Stata command asks for a bar graph of the mean value of
the continuous variable spread out “over” the type of institution.

Figure 6.11 Bar Graph of Average Tuition By Type of College

graph bar (mean) costt4_a, over(inst_type)



6.9.2 Box Plots
We can also use a box plot for the same data displayed in the bar graph (Figure 6.12). With a box plot,
in addition to comparing means, we can see the dispersion of a variable. The Stata command to create
a box plot and the output are illustrated next, or we could use the following sequence in the menus:
Graphics → Box plot

graph box costt4_a, over(inst_type)

Figure 6.12 Box Plot of Average Tuition by Type of Institution

The line inside the shaded box represents the median value. The upper and lower borders of the box
represent the upper and lower quartiles. In other words, the upper border is the 75th percentile and the
lower border is the 25th percentile so that 50% of the observations fall within the range represented by
the box. The “whiskers” or horizontal lines at the top and bottom of the graph extend out to the last value
that is less than or equal to 1.5 times the interquartile range value. Finally, the outliers are extreme
values that fall outside of 1.5 times the interquartile range value.

From the box plot, it is easy to see that the private for-profit institutions have the highest median value,
and the public universities have the largest spread of extreme outliers.

6.9.3 Histograms
While a bar graph or box plot is useful for a limited number of categories, as in Figures 6.11 and 6.12, a
histogram is a better choice for a continuous variable with numerous values. For example, the median
debt among college students who graduate, which is a continuous variable, can be illustrated as a
histogram (Figure 6.13). The Stata command to generate a histogram is shown next, or this can be
done using the menus with the sequence Graphics → Histogram. The commands illustrated in the Stata
code ask Stata to generate a histogram of the continuous variable. The bin(10) command lets Stata
know to use 10 bars, and the term frequency indicates that the vertical axis should show the number of
times or frequency that the range of values represented by the bar appears.



Figure 6.13 Histogram of the Median Debt Owed by College Graduates Based on the
College Scorecard Data From April 23 – Usnews

hist grad_debt_mdn, bin(10) frequency

The frequency on the vertical axis shows the number students who report each level of debt. Then,
looking at the widest of the bars, you can see how many students fall into each range. For example,
around 350 students fall in the highest range of roughly $9,000.

6.9.4 Pie Charts
A pie chart is useful for a categorical variable with a limited number of categories where only one
category can be selected by the respondent. For example, using the test score requirements of
colleges, we can make a pie chart (Figure 6.14) that gives a visual example of the percentage of
colleges that fall into each test score category. If we choose a variable with 40 possible responses (e.g.,
a student’s major), then each slice of the pie would be too small.



Figure 6.14 Pie Chart of College test Score Policies

To generate a pie chart, we would run the Stata command that follows or use the following sequence in
the menus: Graphics → Pie chart. The command p label(all percent) indicates that Stata should
include the percentage inside of each pie slice.

graph pie, over(admcon7) plabel(_all percent)

6.10 SUMMARY OF COMMANDS USED IN THIS CHAPTER
As described in Chapter 4, this last section of each chapter summarizes all of the Stata code used in the
chapter (Table 6.6). In addition, all Stata code used throughout the book is summarized in Appendix 1.



Function Code
Frequency table

tab inst_type, sort

tab1 region admcon7, sort

Mode
egen mode = mode(ugds)

egen mode1 = mode(ugds), nummode(1)

egen mode2 = mode(ugds), nummode(2)

Summary table sum ugds, detail
Tables with mean, median, and standard deviation

table inst_type, stat(mean costt4_a) ///

stat(median costt4_a) nformat(%6.0fc)

table inst_type, stat(mean grad_debt_mdn) ///

stat(sd grad_debt_mdn) nformat(%6.0fc)

Tables with row percentages tab inst_type admon7, row
Tables with and without sample weights

tab health happy, row nofreq

tab health happy [aw=wtss], row nofreq



Function Code
Bar graphs, box plots, histograms, and pie charts

graph bar (mean) costt4_a, over(inst_type)

graph box costt4_a, over(inst_type)

hist grad_debt_mdn, bin(10) frequency

graph pie, over(admcon7) plabel(_all percent)

EXERCISES
1. For each of the following variables, indicate the type of variable (categorical or continuous) and its

level of measurement (nominal, ordinal, interval, or ratio).
a. Favorite type of cereal
b. Car prices
c. Total profits
d. Level of happiness
e. Birth date
f. Time of birth

g. Gender
2. Using the data set that you created from Exercise 1 in Chapter 4 (about binge-watching television),

follow the instructions below.
a. Identify both the variable type and scale of measurement for each of the four variables (TV

source, Hours per week, Binge frequency, and Gender) in your data set.
b. What is the mode for “Binge frequency”? Show your Stata command and output as part of this

and for all of the following answers.
c. What is the 25th percentile value for “Hours per week”? Explain what this means in words.
d. What is the variance for “Hours per week”?
e. Make a table that shows “Gender” in the rows and the mean and median of “Hours per week”

in the columns. Format the table so that there are no numbers to the right of the decimal point.
In other words, use only whole numbers.

f. Calculate the coefficient of variation for “Hours per week” (use a calculator for this after
obtaining the numbers that you need).

g. Generate a cross-tabulation of “Gender” and “Binge frequency.” Be sure to think about whether
the rows or columns should add up to 100%. Based on your table, what percentage of women
binge watch frequently, and what percentage of men binge watch frequently?

h. Generate a bar chart that shows the average “Hours per week” that respondents binge watch
TV by gender.

i. Generate a histogram of “Hours per week.”
j. Generate a pie chart of “Binge frequency.” Label each slice of the pie with the percentage

value.
3. Suppose there is a population of five people with height in inches as follows: 58, 62, 63, 70, and 77.
4. Calculate the population variance using a calculator. Show your work to derive the final answer.
5. Now suppose that you take a sample of three of these people who are 62, 63, and 77 inches tall.

Calculate the sample variance using a calculator. Show your work to derive the final answer.
6. Using the GSS2021.dta file, answer the following questions related to political party affiliation and

attitudes about gun permits.
a. Generate a table without weights that shows the political party affiliation (partyid) in the rows

and whether the respondent favors or opposes gun permits in the columns (gunlaw). Show
only the percentages and decide whether to use row or column percentages.

b. Generate the same table as in Part “a,” but apply the weights (wtssps) to the table.



7. Using the College Scorecard April 23 – USNews data set to examine annual salaries six years after
graduation.

a. Generate a table that shows the type of college (USNewsType) and the average annual
median salary six years after graduation for males (md_earn_wne_male1_p6) and the average
annual median salary six years after graduation for non-males (md_wne_male_p6). Format the
table so that there are no digits to the right of the decimal place.

b. Generate a box plot of average annual median salaries of non-males six years after graduation
(md_earn_wne_male0_p6) by the type of university (USNewsType) by adding the commands “,
over (USNewsType) at the end of your line of code. You will see that the x-axis labels run
together. To fix this, click on the Graph Editor icon at the top of your graph. Then click directly
on the x-axis labels. This will bring up a dialogue box called “Axis properties.” Click on label
properties, and then choose 45 degrees in the “angle” box. Then click on “Ok.”

KEY TERMS

categorical variable

coefficient of variation

continuous variable

cross-tabulation

independent variable

interval scale

nominal scale

open-ended questions

ordinal scale

percentile

ratio scale

standard deviation

variable

variance



PART III TESTING HYPOTHESES
In Parts III and IV of this book, each chapter involves a research
question, a null hypothesis, and a statistical test. A summary of
these for each chapter is offered in Appendix 2. This summary

should help you to quickly identify what type of statistical procedure
or test should be used and the procedures to implement the test.



7 THE NORMAL DISTRIBUTION, HYPOTHESIS
TESTING, AND STATISTICAL SIGNIFICANCE



CHAPTER PREVIEW

Steps Example
Research
question

Did 50 students who took an SAT preparatory course earn significantly
higher scores on math SAT tests compared with the other students at
the same high school?

Null hypothesis There is no difference in SAT scores among those students who took a
preparatory course and those who did not.

Test Standard score or z score
When to use Comparing a sample mean with a population mean. The population

standard deviation is known.
Calculate the
standard error of
the mean

σ

X

=

σ

√n



Steps Example
Calculate the
standard or z
score

Z =

(X

i

−μ)
σ

X

Compare the p
value to the p
critical

Use a “z score to percentile” calculator or z table.

7.1 INTRODUCTION
Many high school students in the United States take the Scholastic Aptitude Test (SAT) as part of the
college admissions process. In addition to their individual score on a scale of 400 to 1,600, students are
told their percentile or rank that allows them to compare their score with other test takers. High schools
also use the SAT scores to compare their own students with national standards. In fact, a whole industry
has evolved to help students improve their scores. Some organizations offer free online courses, while
others offer fee-based classes that can run as high as $2,000. But do they make a difference? Are they
worth it? Given the trend toward test-optional admissions policies illustrated in Figure 7.1, many people
may now question the value of an SAT preparatory course.

Description

Figure 7.1 Article

Source: More colleges than ever have test-optional admissions policies – and that’s a good thing. The Conversation.
January 10, 2018. https://theconversation.com/more-colleges-than-ever-have-test-optional-admissions-policies-and-thats-
a-good-thing-89852

In this chapter, we will learn how to determine when something is unusually different or statistically
significant. We will start by looking at exam scores and learn how a student can determine his or her
rank within a class. We will then learn about sampling distributions and the standard error of the mean.
Finally, we will use these concepts to test whether the average SAT scores among students who took a
preparatory course are significantly different from the scores of students who did not take a preparatory
course. We will then briefly turn to comparing a sample proportion to a population proportion. Rather
than using descriptive statistics as we did in Chapter 6, we are now turning to inferential statistics,
whereby we are making inferences about a population based on a sample.



7.2 THE NORMAL DISTRIBUTION AND STANDARD SCORES
Suppose you receive an exam score of 60. You may be disappointed until you learn that you earned the
highest score. Alternatively, you may earn an 85 and be quite satisfied until you learn that the average
was a 95. If the professor announces the average score, you only know how you did relative to the
average. If, however, the professor tells you the standard deviation, you can learn what percentage of
students did just as well or better. We will use the exam.dta1 data set and the normal distribution to learn
how to determine this information.

The exam.dta data set shows the exam scores for 50 students in a statistics course. The mean score for
the exam is 80, and the standard deviation is 5. Figure 7.2 shows a histogram of the variable “grade,”
which we learned how to generate in Chapter 6 using the command hist. We also learned in Chapter 6
that a histogram shows ranges of values on the horizontal axis and the number of times they appear, or
the proportion of each set of values, on the vertical axis. In this case, the shape of the histogram looks
like a bell curve. Many continuous random variables exhibit this shape with most values clustering
around the mean and fewer observations in the extremes or in the tails of the bell curve. This is known
as a normal distribution, and it is one of the most important concepts in statistics. It is important
because not only do so many variables follow this distribution, but also we use the normal distribution to
draw conclusions about the characteristics of a population based on a sample even when the underlying
distribution is not normal (see Section 7.8 on the Central Limit Theorem).

Description

Figure 7.2 Histogram Of Test Scores

Figure 7.3 shows the normal distribution, which exhibits perfect symmetry. Exactly half of the area under
the curve falls on each side of the mean value. As illustrated, we can also see what percentage of the
area falls within 1, 2, and 3 standard deviations of the mean. Using our data from the exam data set, the
second line of numbers shows 80 as the mean score and increments of 5 on either side since the
standard deviation is 5. In other words, we can say that 68% of students scored between 75 and 85, or
within 1 standard deviation of the mean, 95% scored within 2 standard deviations (70–90), and 99%
scored within 3 standard deviations (65–95) of the mean.



Figure 7.3 The Normal Distribution And Student Exam Scores

We can convert each number in our data set to a standard score, which is also known as a z score.
Essentially, every student’s grade can be expressed as the number of standard deviations that it
deviates from the mean. The standard score is expressed in Equation 7.1.

(7.1)

Standard score or z score =

(X

i

− µ)
σ

where

Xi = the value of one individual’s score

µ = the average value of the variable X

σ = the standard deviation of the variable X

The numerator shows the difference between one student’s score and the mean of all scores. If you
earned an 85 and the class average was 80, for example, the numerator would be 5 points above the
class average. The denominator is the value 1 standard deviation. Dividing how much your score
differed from the mean by the standard deviation tells you how many standard deviations your score is
above or below the mean. In this case, positive 5 divided by a standard deviation of 5 says that you are
1 standard deviation above the mean.

The next step to determine how many students did just as well or better is to find out how much of the
area under the normal curve is to the right of 1 standard deviation. As we saw in Figure 7.3, 68% of the



area under a normal curve lies within 1 standard deviation (−1 to +1) of the mean, or 34%, lies between
the mean and 1 standard deviation on either side of the mean. Since 50% of the area under the curve
lies to the right of the mean, we can subtract 34% from 50% to determine that 16% falls to the right of 1
standard deviation. We can then say that 16% of students earned a score of 85 or higher, and 84%
earned lower scores. Since 16% of 50 students is 8 students, we know that 8 students earned an equal
or higher score. Because the actual distribution isn’t a perfect bell curve, this can be a rough estimate. If
we use the tab command to generate a frequency table, as we learned in Chapter 6, Figure 7.4 shows
that 3 students earned an 85, and 5 students earned higher than 85.

Description

Figure 7.4 Frequency Distribution Of Exam Scores

There are many online calculators that will compute the area to the right or left of a standard score. If we
use the calculator at “StatDistributions” (https://www.statdistributions.com/normal), we will see the image
in Figure 7.5.



Description

Figure 7.5 Area Under The Normal Curve For A Z Score Of +1

Alternatively, we could use a z score table, which is illustrated in Table 7.1 and included in Appendix 5.
When using the table, you would look for your z score in the table, which is +1 in this case. Across from
the +1, we see the areas for a one-tailed and a two-tailed probability. Because we only want to know
how much area is above +1 and below −1, we would use the one-tailed probability. Looking at the image
above the table for the one-tailed test, you can see a z with the area shaded to the right of the z. The
one-tailed probability for +1 of 0.15866 represents the area that is shaded or roughly 16% of the area.
Since the entire area under the curve represents 100% of the area, 100 minus 16 tells us that 84% of
the area lies to the left of a z score of +1 (Figure 7.6).

Description

Figure 7.6 Areas Under The Normal Curve (Z Score)



Z Scores
Probability
One-tailed Two-tailed

0 0.50000 1.00000
0.1 0.46017 0.92034
0.2 0.42074 0.84148
0.3 0.38209 0.76418
0.4 0.34458 0.68916
0.5 0.30854 0.61708
0.6 0.27425 0.54851
0.7 0.24196 0.48393
0.8 0.21186 0.42371
0.9 0.18406 0.36812
1 0.15866 0.31731



Z Scores
Probability
One-tailed Two-tailed

1.1 0.13567 0.27133
1.2 0.11507 0.23014
1.3 0.09680 0.19360
1.4 0.08076 0.16151
1.5 0.06681 0.13361
1.6 0.05480 0.10960
1.7 0.04457 0.08913
1.8 0.03593 0.07186
1.9 0.02872 0.05743
2 0.02275 0.04550
2.1 0.01786 0.03573
2.2 0.01390 0.02781
2.3 0.01072 0.02145
2.4 0.00820 0.01640
2.5 0.00621 0.01242
2.6 0.00466 0.00932
2.7 0.00347 0.00693
2.8 0.00256 0.00511
2.9 0.00187 0.00373
3 0.00135 0.00270
3.1 0.00097 0.00194
3.2 0.00069 0.00137
3.3 0.00048 0.00097
3.4 0.00034 0.00067
3.5 0.00023 0.00047
3.6 0.00016 0.00032
3.7 0.00011 0.00022
3.8 0.00007 0.00014
3.9 0.00005 0.00010

If the z score is negative, we can still use the table since a normal distribution is perfectly symmetric. As
described above, exactly half of the area under the curve falls on each side of the mean value. If a
student scored a 75, the class average is 80, and the standard deviation is 5, their z score would be ((75
− 80)/5) or a negative one. We can see from the table that the area to the right of +1 is 0.15866, and
therefore, we know that the area to the left of −1 is also 0.15866. Since the total area is equal to 1, 1
minus 0.15866 is 0.84134. In this case, roughly 16% of the students earned lower scores, and 84%
earned equal or better scores.

Now let’s suppose that the standard deviation for the class is 10 instead of 5. In that case, a student
who earned an 85 when the average was 80 would have a standard score as follows:



Z score or Standard score =

85 − 80

10

= 0. 5

Using the z score table, we can see that the area to the right of 0.5 is 0.30854, or roughly 31%.
Therefore, 31% of students earned an equal or higher score, compared with only 16% when the
standard deviation was 5.

You can also use this same information to determine your percentile rank. If, for example, 16% earned
an equal or higher score in Case A, then 84% earned a lower score. You would then be at the 84th
percentile. In Case B, you would be at the 69th percentile. Table 7.2 shows the results from the two
examples above.

 Case A Case B
Class mean 80 80
Standard deviation 5 10
One student’s test score 85 85
Standard score or z score 1 0.5
One-tail probability 0.16 0.31
Number of students in class 50 50
Number of students who earned a higher score 8 16
Percentile rank 84th percentile 69th percentile

Although Stata doesn’t calculate z scores, a user-written program is available in Stata to do this. In the
Command Window, you would type in help zscore and scroll down until you see “Web resources from
Stata and other Users.” Then click on “zscore” and then on the link provided. Finally, click on “Click here
to install.” Once it is installed, type in the command zscore varname, and Stata will create a new
variable called z varname in your data set. Then, if you summarize the new variable, you will see that
the mean is 0 and the standard deviation is 1.

7.3 SAMPLING DISTRIBUTIONS AND STANDARD ERRORS
In the previous section, we examined one student’s score compared with the rest of the class. Using the
normal distribution, we were able to see the percentile rank of the student. We can also use the normal
distribution to examine how one sample mean compares with a population mean. To do this, we will first
need to learn about sampling distributions and standard errors. We will define these terms later as we
develop an example.



Although universities can have hundreds or thousands of students, let’s suppose that only five students
attend a university. The amount of money that they spend on eating out per week is shown in Table 7.3,
along with the overall mean of $67 and a standard deviation of $19.60.

Student Weekly Amount Spent on Eating Out in Dollars
A 55
B 45
C 90
D 85
E 60
Mean 67
Standard deviation 19.6

Survey designers rarely have the resources to gather information from the entire population. Instead,
they take a sample to estimate the population characteristics. In this case, let’s assume that we only
have resources to sample two students. Figure 7.7 shows all possible combinations of two students and
the average amount spent for each sample of two. Although we typically would not sample the same
person twice, we have included it here to illustrate the principle of the standard error of the mean.



Description

Figure 7.7 Sampling Distribution Of All Possible Samples Of Two Students

We know that the true mean of the population is $67. From all possible combinations of two students,
we can see that the average of some samples is very close to the true mean, and others are much
farther from the true mean. With larger sample sizes, we would see less variability in the sample means.
Similarly, lower variation in the population values would lead to less variability in the sample means.

The distribution of all possible values for a statistic (in this case, the mean) is called a sampling
distribution. When we take the standard deviation of all possible sample means, it is called the standard
error of the mean, which is used extensively in statistics. Fortunately, we don’t need to take all possible
samples of a population to determine the standard error of the mean. Instead, we can calculate it by
dividing the standard deviation of the population by the square root of the number of cases in our
sample as shown in Equation 7.2.

(7.2)

Standard error of the mean =

σ

√n

=

19.55671

√

2

= 13.83



.

where

σ = standard deviation of the population

n = sample size

Notice that the answer to the calculation in Equation 7.2 gives us the same answer that we calculated
by using the standard deviation of all possible means.

To illustrate this using a graph, Figure 7.8 shows the distribution of all possible sample means of two
students where the mean is 67 and the standard deviation of all possible sample means (or the
standard error of the mean) is equal to 13.83, or 14 if we round this to the nearest whole number. We
can expect roughly 95 percent of all possible sample means to fall within two standard deviations of the
mean or 39 (67 – 14 – 14 = 39) and 95 (67 + 14 + 14 = 95).

Description

Figure 7.8 Distribution of all possible sample means of 2 students

We can now use this information about the standard error of the mean to test a hypothesis, which we
will show in the next section.

7.4 EXAMINING THE THEORY AND IDENTIFYING THE
RESEARCH QUESTION AND HYPOTHESIS
With the large numbers of students who take the SAT test each year, there is an entire industry built
around raising SAT scores through preparation. Many studies have shown that taking a preparatory
course will raise a student’s score. But are these tests biased? Are they taken by children from wealthier
families or children enrolled in schools with higher achievement levels?

In this section, we will assume that the average math SAT score at High School X was 511 with a
standard deviation of 120. To determine if the students could raise their scores significantly, the school
randomly assigned 50 students in the high school to take a preparatory course prior to the test. The
average score among the 50 students who took the course was 535. We now want to find out if the
preparatory course worked, or if their average score of 535 is significantly different from 511.



In Chapter 1, we learned that part of the scientific method or the research process is to examine the
theory, identify a research question, and form a hypothesis. Theory suggests that preparation for exams
will lead to higher scores. In this case, our specific research question can be stated as follows: “Did
students at High School X who took a preparatory course earn higher average scores on math SAT
tests compared with the population of students at High School X?” As described in Chapter 1, we can
then state a hypothesis, which is the answer to the question. The hypothesis could be positive or
negative. For example, we could state that the students who took the preparatory course earned a
higher or a lower score. When using statistical tests, however, we would define a null hypothesis, which
is a testable statement indicating that there is no difference or no change. In this case, for example, the
null hypothesis would be that students at High School X who took the course earned the same score as
the rest of the high school population. The researcher would then use statistical techniques to test the
hypothesis.

7.5 TESTING FOR STATISTICAL SIGNIFICANCE BETWEEN A
SAMPLE MEAN AND A POPULATION MEAN
Now that we have identified our research question and stated our null hypothesis, we can test whether
there is a statistically significant difference between the average score of the 50 students who took the
preparatory course and the students who did not take the course.

Procedures

1. Calculate the standard error of the mean.

Instead of looking at the standard deviation of the sample of 50 students, we must calculate the
standard error of the mean since we are considering the distribution of possible means.

Standard error of the mean = σ

X

=

σ

X

√n

=

120

√

50

= 16. 97

2. Calculate the standard score using the sample mean and the population mean in the numerator.

In this step, our numerator shows the difference between the average score of the 50 students who
took the course and the population of students at the school. When we divide by the standard error
of the mean, we are essentially looking at how many standard deviation units the difference is
above or below the population mean.

Standard score =

(X − μ)
σ

X

=

(535 − 511)

16. 97

= 1. 41



3. Look up the area under the normal curve for a standard score of 1.41.

In the example in Section 7.2, we were looking at one individual’s score and comparing it with the
class average to determine that student’s percentile rank. In this case, we are examining the scores
of 50 students to determine if their average score is unusual compared with the population average.
Rather than looking at the area to the right of the standard score, we often want to examine both
the extreme upper and lower values. It could be the case, for example, that students who take the
course will earn a lower score. In fact, if you drew repeated samples of 50 students from the high
school population and put them in an SAT preparatory course, many of the samples of 50 students
would have a lower average score compared to the population average. For this reason, when we
test hypotheses, we typically use a two-tailed test. In other words, we are testing whether our
sample average is different than the population average rather than just higher or lower than the
population average. In particular, we want to see how often we would see a score that is 535 or
greater (24 points above the population average) or 487 or less (24 points below the population
average).

If we use the calculator at “StatDistributions,” (www.statdistributions.com/normal), we can plug in our
standard score of 1.41 and see the image in Figure 7.9.

Description

Figure 7.9 Area Under The Normal Curve For A Two-Sided Standard Score of 1.41

Alternatively, we could use the areas under the normal curve in Table 7.1. Using our z score of 1.41 and
the two-tailed probability, we can see that the area in the two tails is equal to 0.16151, or roughly 16%,
as shown by the online calculator.

Finally, we can show this same information on a graph generated by Stata. Figure 7.10 shows the
distribution of all possible sample means of 50 students where the mean is equal to 511 and the
standard error of the mean (the standard deviation of all possible sample means) is 16.97, as calculated
previously, or 17 if we round to the nearest whole number. The shaded areas illustrate that the area to
the right or equal to 535 (or 1.41 standard deviations above the mean) combined with the area equal to
or less than 487 (or 1.41 standard deviations below the mean) is 0.16. So you could say that in this is
not that usual since you could expect to see 535 or higher or 487 or lower in 16% of all samples of 50
students that could be drawn from the population.



Description

Figure 7.10 Distribution of all possible sample means of 50 students

To better understand the distribution of sample means, Figure 7.11 shows two graphs. In Graph A, we
see the distribution of the math SAT scores for all students in High School X. This shows the population
mean (511) and the population standard deviation (120). In Graph B, we see the distribution of all
sample means of 50 students with a mean of 511 and a standard deviation (which is now the standard
error of the mean because it is the standard deviation of all possible sample means) of 17. Both graphs
show shaded areas in the tails that represent 5% of the area under the curve. If the 50 students who
had taken the SAT preparatory course had earned 545 or higher or 477 or lower, we would then say that
this is unusual or significantly different than the population mean. We would only see these scores in 5%
of all samples. In our example, however, the 50 students earned 535 on average, which does not fall in
the shaded areas.

Description

Figure 7.11 Distribution of all SAT scores compared to distribution of all possible sample
means of 50 students.

7.6 REJECTING OR NOT REJECTING THE NULL HYPOTHESIS
Before interpreting statistical tests, scientists or researchers set an alpha level, which is also referred to
as p (critical). The alpha level is the probability of rejecting the null hypothesis when it is true, or a Type I
error. It is typically set at 0.05, but researchers also use 0.01, 0.001, and sometimes 0.1. The larger the
alpha level, the more likely you are to find statistically significant results.



Although probability is a number between 0 and 1, it is often expressed in percentage terms. For
example, you could say that the probability of committing a Type I error is 0.05, or there is a 5% chance
of committing a Type I error.

Using an alpha level of 0.05, we would say that the average SAT score of 535 is statistically significant if
the probability of observing this value or greater (or ≤487, the opposite extreme) is 0.05.

In our example above, 16% of the samples fell in the two extremes. Our p value is then 0.16. The official
definition of a p value from the American Statistical Association is given as follows: “Informally, a p value
is the probability under a specified statistical model that a statistical summary of the data (e.g., the
sample mean difference between two compared groups) would be equal to or more extreme than its
observed value” (Wasserstein & Lazar, 2016, p. 131).

We can now compare our p value to the alpha level to determine whether our results are unusual or
statistically significant. The rule along with our example is shown in Figure 7.12.

Description

Figure 7.12 Rule For Rejecting Or Not Rejecting The Null Hypothesis

In other words, you would expect to see scores of 535 or greater or 487 or less in 16% of all samples.
Since this is fairly high (much higher than 5%), we would say that it is not that unusual to see this score.

Figure 7.13 shows the distribution of all possible sample means. In Figure A, we show that 5% of all
sample means would be 545 or higher or 477 or lower. Given the test score results of 535, Figure B
shows that 16% of all samples of 50 students would yield a test score of 535 or higher or 487 or lower.
So again, we can say that our results are not that unusual since 16% of all samples of 50 students
would result in 535 or something more extreme.



Description

Figure 7.13 Comparing all possible sample means of 50 students with 5% of the areas
in the tails on the left and 16% on the right.

It is important to note that we would never say “we accept” the null hypothesis since there is always
some chance that our samples did not accurately reflect the population. In fact, the alpha level tells us
the probability of rejecting the null hypothesis when it is true. This is referred to as a Type I error, as
described earlier. A Type II error occurs when we do not reject the null hypothesis when it is false.
Appendix 4 offers a summary of the decision rules for statistical significance described in this chapter.

Recently, the American Statistical Association released a statement on statistical significance and p
values to correct some of the many misuses of the concept. As they emphasize, the p value does not
indicate if a hypothesis is true or if the data were produced by random chance. Furthermore, they
emphasize that researchers should consider other factors besides the p values, such as the “design of a
study, the quality of the measurements, the external evidence for the phenomenon under study, and the
validity of assumptions that underlie the data analysis.” Finally, they suggest other methods in addition
to p values to test hypotheses, such as confidence intervals, which are discussed in later chapters
(Wasserstein & Lazar, 2016).

7.7 INTERPRETING THE RESULTS
The results in Figures 7.9 and 7.13 show us that the probability of observing a standard score (or z
score) that is greater than 1.41 or less than −1.41 is less than 0.16. As we discussed earlier, typically a
p critical or alpha level is set at 0.05. We then compare our p value of 0.16 with the alpha level of 0.05.
Because our p value is greater than 0.05, we do not reject the null hypothesis. In other words, there is
not enough evidence to conclude that the students who took the preparatory course earned significantly
higher or lower scores than the student population at High School X.

In Parts III and IV of the book, each chapter involves a research question, a null hypothesis, and a
statistical test. A summary of these for each chapter is offered in Appendix 2. This summary should help
you to quickly identify what type of statistical procedure or test should be used and the procedures to
implement the test.

7.8 CENTRAL LIMIT THEOREM
In the previous sections, we used the normal distribution to determine one student’s percentile rank and
to examine the scores of 50 students who took an SAT preparatory course compared with the
population of students at that high school. As we mentioned earlier, the normal distribution is one of the
most important concepts in statistics. It is used to draw conclusions about the characteristics of a
population based on a sample. What is particularly unique is that the central limit theorem tells us that
even if the population distribution is not normal, the sampling distribution of means from a population will



approach a normal distribution as the sampling size increases. In other words, we can still use the area
under the normal curve to determine the probability of observing an equal or more extreme value of the
mean observed in our sample even when the population is not normal. Next, we use an example to
illustrate this point.

Let’s suppose that there are 1,000 students at High School X. Their math SAT scores range from 200 to
800, but they are not normally distributed. Instead, as you see in Figure 7.14, there appears to be a
bimodal distribution or a distribution clustered around two different values of roughly 400 and 600.

Description

Figure 7.14 Bimodal Distribution Of Sat Scores At High School X

According to the central limit theorem, if we draw many samples of 50 students, the means of each
sample would form a normal distribution. Figure 7.15 shows the mean values of 1,000 samples of 50
students from the student population. As illustrated, the means form an almost perfect bell shape, which
allows us to use the normal distribution to test hypotheses.2



Description

Figure 7.15 Means of 1,000 Samples of Math sat Scores from 50 Students

7.9 PRESENTING THE RESULTS
In addition to learning how to test hypotheses using statistics, it is important to learn how to convey the
results. In particular, there may be times when you are reporting your results for a newspaper or a
government report that is aimed at a nontechnical audience. You may also want to publish your results
in an academic journal, which would require more details related to the statistical tests. Chapter 16,
“Writing a Research Paper,” offers guidelines on each type of test and how to report the results. We will
also offer specific examples in each of the remaining chapters on how to address the two types of
audiences based on the example used in the chapter.

Presenting the Results for a Nontechnical Audience

To present the results of the test to a nontechnical audience, we could submit the following statement:

High School X randomly chose 50 students to take part in an SAT preparatory course. They
then compared their math SAT score with the rest of the high school population. Students who
took the course earned 535 on average, which was higher than the high school average of 511,
but it was not a statistically significant difference.

Presenting the Results in a Scholarly Journal

In a peer-reviewed journal, we would include more information. These results could be explained as
follows:

Using a standard score or z score, we compared the math SAT scores of 50 students, who
were selected randomly to take a preparatory course, with the math scores of the rest of the



population at High School X. Students who took the course earned 535 on average (SD =
90.25) compared with the high school average of 511 (SD = 120.00). This was not a
statistically significant difference, z = 1.41, p = 0.16.

7.10 COMPARING A SAMPLE PROPORTION TO A POPULATION
PROPORTION
The same concepts described previously can be applied to sample proportions. For example, suppose
that a representative in congress won their election in the previous cycle and earned 58% of the vote
(the proportion of the voting population). They are planning to run again for office and want to know if
they are still able to win the same proportion of the votes. A sample of 500 voters shows that 53% of
them will vote for the candidate. You now want to test if this is a statistically significant difference from
the original 58% of the vote.

Similar to the distribution of sampling means, the sampling distribution of proportions will be normally
distributed around the true population proportion. We therefore can use the same steps as we did above
to compare a sample mean to a population mean but with slightly different formulas for the z score.

We begin by calculating the standard error of the proportion using the formula below:

SE =

√

π(1 − π)

n

=

√

. 58*(1−. 58)

500

= 0.02

Where:

π = the population proportion

n = sample size

In other words, 95% of sampling proportions would fall within 1.96 standard deviations of the true
population proportion. In this case, that would mean within 0.0392 points (1.96 × 0.02). We would then
calculate the z score as shown here:

z =

p− π

SE

=

. 53−. 58

0.02

= −2.27

where



p = the sample proportion

We can then use a z table to look this up and find that the probability of observing a z score greater than
2.27 or less than −2.27 (a two-tailed test) is 0.02145. Using an alpha level of 0.05, we would reject the
null hypothesis that the same proportion of voters would vote for the candidate in the second election.
Building a confidence interval, we can be 95% sure that the proportion of voters who would vote for the
candidate would be between .53 +/− (1.96 × .02) or between .4908 and .5692.

7.11 SUMMARY OF COMMANDS USED IN THIS CHAPTER
As described in Chapter 4, this last section of each chapter summarizes the hypothesis, test,
procedures, and the Stata code used in the chapter (Tables 7.4 and 7.5). These are also summarized in
Appendices 1 and 2.

Chapter
Title Null Hypothesis Test

Info
Known

/Type of
Variables

Procedures/Interpretation



Chapter
Title Null Hypothesis Test

Info
Known

/Type of
Variables

Procedures/Interpretation

7: The
Normal
Distribution

There is no difference in
SAT scores among those
students who took a
preparatory course and
those who did not.

Z score
or
standard
score

Single
sample

Know
population
mean

Know
population
standard
deviation

1. Standard error of mean = 
(σ/√n)

2. Standard score ((X −
μ)/Standard error of mean)

3. Look up percentages for
standard score using normal
distribution

When the null hypothesis is true,
the probability of observing a z
score greater than +1.41 or less
than −1.41 is less than 0.16. Do
not reject the null hypothesis.

Function Code
Histogram hist grade
Frequency table tab score
Z score

help zscore

zscore varname

EXERCISES
1. Your resting heart rate is 62. The average resting heart rate for the class is 72 and the variance is

25. The data are normally distributed.
a. What percentage of the class has a lower resting heart rate relative to your own (round to the

nearest whole number)?
b. If there are 85 students in the class, how many students (the actual number, not the

percentage) have a higher resting heart rate relative to your own? (Round to the nearest whole
number.)

2. Many studies have confirmed that in the population, the flu lasts 21 days on average with a
standard deviation of 7. The manufacturers of Tamiflu want to show that their product reduces the



length of the flu. They choose a sample of 25 people for their experiment and give them Tamiflu at
the start of their flu. The average length of the flu among the 25 people taking Tamiflu was 18 days.

a. If you ran a test to determine if Tamiflu does reduce the length of a flu, what is the null
hypothesis?

b. Using an alpha level or p critical of 0.05, use statistics to show if there is a statistically
significant difference in the average length of time with and without taking Tamiflu. Show all of
your work to prove this, and indicate whether you would reject your null hypothesis—why, or
why not?

c. Write a paragraph to explain your results to a nontechnical audience.
d. Write a paragraph to explain your results in a scholarly journal.

3. Suppose that you have a population of three individuals and the number of times that they exercise
per week is shown in the table below. We will use this information to show that there are two ways
to calculate the standard error of the mean when drawing a sample.

Individual Exercise Times per Week
A 2
B 0
C 7
Mean 3
Standard deviation 3.61

a. Write out all combinations of two individuals from the three (including drawing the same person
twice) and show the mean of each pair.

b. Using the formula for a standard deviation, plug in each mean in your table and use N − 1 in
the denominator to calculate the standard error of the mean.

c. Instead of using information from the table that you generated, use the formula for the standard
error of the mean when you know the population standard deviation ( σ

√n

) to determine the
standard error of the mean.

4. Suppose you are a data analyst at a company that provides Internet services. You want to test
whether the average download speed of a new type of modem is significantly different from the
population’s average download speed of 50 Mbp with a standard deviation of 8. You randomly
select a sample of 16 customers and test their download speeds, finding that the sample mean
download speed is 55 Mbps. Assuming an alpha level of 0.05, you want to test if there is a
statistically significant difference between the new modem download speed and the population
average.

a. What is your null hypothesis?
b. Show your work to test whether there is a statistically significant difference.
c. Would you reject your null hypothesis? Why, or why not?
d. Explain in words what is meant by the p value using statistics from this case.
e. Based on the problem above, draw a graph that illustrates the p value by shading in the areas

that represent the p value. Label what is on the horizontal axis. Place the mean value and on
the horizontal axis as well as the values that indicate where the p value areas begin.



KEY TERMS

normal distribution

z score

Descriptions of Images and Figures
Back to Figure

The number of colleges and universities with test-optional admissions policies recently topped 1,000 – a
milestone that one expert says is a welcome trend.

Back in the 1980s, Bates College and Bowdoin College were nearly the only liberal arts colleges not to
require applicants to submit SAT or ACT test scores.

In 2018, FairTest, a Boston-based organization that has been pushing back against America’s testing
regime since 1985, announced that the number of colleges that are test-optional has now surpassed
1,000.

This milestone means that more than one-third of America’s four-year nonprofit colleges now reject the
idea that a test score should strongly determine a student’s future. The ranks of test-optional institutions
include hundreds of prestigious private institutions, such as George Washington, New York University,
WesleyanUniversity and Wake Forest University. The list also includes hundreds of public universities,
such as George Mason, San Francisco State and Old Dominion.

Back to Figure

The x-axis represents the score, ranging from 70 to 90, and the y-axis represents the frequency, ranging
from 0 to 15. The tallest bar corresponds to a score of 80, with a frequency of 14. The smallest bar
corresponds to a score of 70, with a frequency of 3. The distribution is roughly bell-shaped, centered
around a score of 80.

Back to Figure

Score Freq. Percent Cum.
69 1 2.00 2.00
70 1 2.00 4.00
71 1 2.00 6.00
73 2 4.00 10.00
74 2 4.00 14.00
75 2 4.00 18.00
76 4 8.00 26.00
77 3 6.00 32.00
78 6 12.00 44.00
79 3 6.00 50.00
80 5 10.00 60.00
81 3 6.00 66.00
82 2 4.00 70.00
83 5 10.00 80.00



84 2 4.00 84.00
85 3 6.00 90.00
86 1 2.00 92.00
87 1 2.00 94.00
88 2 4.00 98.00
89 1 2.00 100.00
Total 50 100.00  

Back to Figure

The X-axis is labeled with z-values ranging from -3 to 3. The area under the curve to the right of z=1 is
shaded, indicating the calculation of a one-tailed p-value, which is displayed as 0.159 at the top of the
image and near the shaded area. The option for calculating the right tail is selected, as indicated by a
radio button next to "right tail." Other options available are "two tails," "left tail," "mean to z," and "2-sided
mean to z," which are not selected.

Back to Figure

In the "One-tailed" curve, there is a shaded area to the right of a specific z-value on the x-axis. In the
"Two-tailed" curve, there are two symmetrically shaded areas, one to the left of a negative z-value and
one to the right of a positive z-value.

Back to Figure

All Possible Samples
of Two Students

AverageExpenditureof
Two Students

Sample MeanMinus
PopulationMean

EstimatedStandard
Errorof the Mean

AA 55 -12 0
AB 50 -17 5
AC 72.5 5.5 17.5
AD 70 3 15.6
AE 57.5 -9.5 2.5
BB 45 -22 0
BC 67.5 0.5 22.5
BD 65 -2 20
BE 52.5 -14.5 7.5
CC 90 23 0
CD 87.5 20.5 2.5
CE 75 8 15
DD 85 18 0
DE 72.5 5.5 12.5
EE 60 -7 0
Mean 67   
Standard error of the
mean

13.83   

55, 50, 72.5, 70, 57.5, 45, 67.5, 65, 52.5, 90, 87.5, 75, 85, 72.5, 60, 67 are marked and the text points to
it reads "Sample distribution: distribution of all possible values for a statistic. Example -- All possible
means of samples of 2 drawn from the student population of 5 to estimate how much they spend per
week to eat out."



13.83 is marked and the text points to it reads "Standard error of the mean: standard deviation of all
possible sample means.• Example -- The standard deviation of the means of all possible samples of
sizes of two.

Back to Figure

The x-axis is labeled as "Average spending of each sample of 2 students," with values ranging from 25
to 109. The y-axis is labeled as "y" with values ranging from 0 to 0.03. There are two shaded regions
under the curve, one between 25 and 39 and the other between 95 and 109, representing the tail areas
of the distribution.

Back to Figure

The X-axis is labeled with z-values ranging from -3 to 3. The area under the curve to the right of z=1.41
is shaded, indicating the calculation of a two-tailed p-value, which is displayed as 0.159 at the top of the
image and near the shaded area. The option for calculating the two tails is selected, as indicated by a
radio button next to " two tails." Other options available are "right tail," "left tail," "mean to z," and "2-
sided mean to z," which are not selected.

Back to Figure

The x-axis is labeled as "Average score of each sample of 50 students," with values ranging from 460 to
562. The y-axis is labeled as "y" with values ranging from 0 to 0.025. There are two shaded regions
under the curve, one between 460 and 487 and the other between 535 and 562, representing the tail
areas of the distribution.

Back to Figure

Graph (a): This represents the distribution of Math SAT scores for all students. The mean score (μ) is
511, and the standard deviation (σ) is 120. The x-axis is labeled "Math SAT Score," with values ranging
from 151 to 871. The bell-shaped curve represents a normal distribution, with the shaded areas in both
tails representing 5% of the distribution.

Graph (b): Represents the distribution of all possible sample means of 50 students’ scores. The mean
(μ) is 511, and the standard error of the sample mean (σx̄) is 17. The x-axis is labeled "Average score of
each sample of 50 students," with values ranging from 460 to 562. The shaded regions in the tails
represent 5% of the distribution.

Back to Figure

Decision rule

• If p-value <= alpha level, reject the null hypothesis.

• If p-value > alpha level, do not reject the null hypothesis.

Our results

• p-value = .16

• alpha level = .05

Decision

• p-value (.16) > alpha level (.05)

• Do not reject the null hypothesis.



Back to Figure

Graph (a): The mean score (μ) is 511, and the standard error of the sample mean (σx̄) is 17. The
shaded regions in both tails represent 5% of the distribution.

Graph (b): Similarly, the mean score (μ) is 511, and the standard error of the sample mean (σx̄) is 17.
The shaded regions now cover a total of 16%, indicating a broader range of sample means that are
more likely compared to graph (a).

Both graphs display the x-axis labeled "Average score of each sample of 50 students," with values
ranging from approximately 460 to 562. The y-axis represents the probability density.

Back to Figure

The x-axis is labeled "x," with values ranging from 200 to 800. The y-axis is labeled "Frequency," with
values ranging from 0 to 80. The histogram has two prominent peaks, indicating a bimodal distribution.
The bars vary in height, with the frequency of values increasing near 400 and 600, which form the two
modes of the distribution. The heights of the bars represent the number of occurrences (frequency) of
values within each range along the x-axis.

Back to Figure

The x-axis is labeled "Mean value of sample of 50" and ranges from 10 to 16. The y-axis is labeled
"Frequency," with values ranging from 0 to 150. The histogram bars cluster around two distinct peaks
between 12 and 14. A smooth curve fitted to the data suggests a normal distribution despite the original
bimodal nature of the data from which the samples were taken.



8 TESTING A HYPOTHESIS ABOUT A SINGLE MEAN
AND A SINGLE PROPORTION



CHAPTER PREVIEW

Steps Example
Research
question

Does the use of ChatGPT improve homework scores

Null
hypothesis

Students who use ChatGPT to generate and practice problems earn the
same average score as those who do not use it

Test One-sample t test
Types of
variables

One continuous variable (grade)

When to use
Comparing a sample mean with an established mean from a population

The population standard deviation is not known.

Assumptions
1. The population is approximately normally distributed.
2. Sample observations are random.

Stata code:
Generic ttest continuousvar==X

where x is some predetermined mean.

Stata code:
Example

ttest grade==86



8.1 INTRODUCTION
ChatGPT (Chat Generative Pre-trained Transformer) was first introduced to the world at the end of
November of 2022. Within one month, it had gained over 100 million users and had become the fastest-
growing consumer software application in history. It was trained to interact intelligently and process large
volumes of data. Very quickly, competitors launched competing “artificial intelligence” software.

With the birth of this new type of software, both professors and students found new uses for it (Figure
8.1). If professors are writing new assignments, for example, ChatGPT could generate endless
examples of a certain type of problem. Similarly, a student could use ChatGPT to generate and solve
problems for further practice. They could also cheat on homework and take-home exams by asking
ChatGPT to solve problems. Thus, a great debate started on the use and value of ChatGPT in
academic circles.

Description

Figure 8.1 Article

Source: Xie and Anderman (2023)

https://theconversation.com/3-ways-to-use-chatgpt-to-help-students-learn-and-not-cheat-205000

In this chapter, we will learn how to test a sample mean to determine if it is significantly different from
some specified value. For example, we can use homework scores from students in a data analysis
course after ChatGPT was introduced and compare their average score to the average homework score
from previous semesters before ChatGPT was introduced. We can then determine if there is a
statistically significant difference between the average homework score for one semester to the previous
semesters. We will assume that the average score in previous semesters was an 86 (considering this
the population mean) and then compare this to the homework score in the first semester in the course
after Chat GPT was introduced (the sample mean).

8.2 WHEN TO USE THE ONE-SAMPLE T TEST
Table 8.1 shows examples from different fields where the one-sample t test can be used. In each case,
there is an assumed population average, but the population standard deviation is unknown. Each of
these can be tested using the one-sample t test.



Field Research Question Null Hypothesis Continuous
Variable

Criminal
justice

Does a judge in one district give
harsher prison sentences to women
convicted of child abuse?

There is no difference in
the average sentence
length by the judge
compared with the national
average.

Sentence time in
months of
women convicted
of child abuse

Economics Do Americans work a 40-hour
workweek?

Americans work 40 hours
per week.

Hours worked
per week among
those Americans
who work full
time

Political
science

What is the average age of pro-life
supporters?

The average age of pro-life
supporters is 53.

Age of pro-life
supporters

Public
health

Do smokers gain weight within the
first year after they stop smoking?

The average weight gain
after 1 year without
smoking is 0.

Weight gain after
1 year without
cigarettes

Psychology Is postpartum depression more
common among mothers who do not
have immediate family members
living nearby than for mothers that
do?

The average depression
score on the “Quick
Depression Assessment”
test is 4.

Quick
Depression
Assessment test
score

Sociology What is the average age that children
own their first cell phone?

Children own their first
phone at the age of 9.

Ownership age
of first phone

Figure 8.2 illustrates a decision tree that helps you decide which statistical test is appropriate for each
type of analysis. As you can see, it will depend on whether you are comparing means or relationships
between variables. In this chapter, we will be looking at a sample mean (average homework score of



students using ChatGPT) and comparing it with an assumed population mean of 86. We would follow
the tree on the left-hand side from “comparing means” to “sample mean to population mean.” Because
we do not know the population standard deviation, we would follow the path to the one-sample t test.

Description

Figure 8.2 Decision tree for Choosing the Right Statistic

8.3 CALCULATING THE ONE-SAMPLE T TEST
In Chapter 7, we learned about using the normal distribution, and we compared the math SAT scores of
50 students who took a preparatory SAT course to the average scores of the population of students at
the same high school. In that case, we knew the population mean and the population standard
deviation. In most cases, however, we will not know the population standard deviation. In fact, it is
typical that we do not know anything about a population and therefore draw a sample to learn about the
population.

In this chapter, we will assume that we know the population mean or some hypothesized value of the
population mean (e.g., the average homework score in a data analysis course prior to the introduction of
ChatGPT), but we do not know the population standard deviation. We will therefore use the sample
standard deviation when calculating a t statistic, which is similar to the z score or standard score that we
used in Chapter 7. The difference, however, is that the sample standard deviation could be larger or
smaller than the population standard deviation, which introduces some uncertainty. To account for this,
we use a t distribution, which looks like a normal distribution but has more area in the tails to account
for the error introduced. Furthermore, its shape depends on the sample size. A larger sample size will
produce a t distribution that is closer to the normal distribution, and eventually, with a large enough
sample, the area under the t distribution will be close to the normal distribution, and either test can be
used. Figure 8.3 shows the t distribution with two sample sizes and the normal distribution. The normal
distribution is higher in the middle with less area in the tails. The two t distributions represent very small
sample sizes (four and two) to emphasize the differences in the distribution. Notice that when the
sample size is four, the distribution is much closer to the normal distribution than when the sample size
is two.



Description

Figure 8.3 Normal and T Distribution for two Sample Sizes

To calculate the t statistic, we use the same formula that we used in the previous chapter when we
calculated the standard score. In this case, however, we substitute the sample standard deviation for the
population standard deviation, as shown in Equation 8.1.

(8.1)

t =

(X − μ)
s

√n

where

X = sample mean

μ = population mean



s = sample standard deviation

n = sample size

The numerator shows us the difference between the sample mean and the population mean. A larger
difference will lead to a larger t statistic and a greater likelihood that there is a statistically significant
difference. The denominator is the standard error of the mean, which is the standard deviation of the
sample means from all possible samples drawn from the population. Combined, the numerator and
denominator tell you how many standard deviation units the observed sample mean is above or below
the population mean.

8.4 CONDUCTING A ONE-SAMPLE T TEST
The “Homework” data set represents 30 students in a data analysis course. It contains only one
variable, grade, which indicates the average homework grade for each of the 30 students at the end of
the course in which students were allowed to use ChatGPT to generate and practice problems.

Research question

Do students who use ChatGPT to generate and practice problems earn a higher grade on their
homework score compared to previous semesters?

Hypothesis

Students who use ChatGPT to generate and practice problems earn 86 on their homework
score (the average from prior semesters before ChatGPT).

Null hypothesis

Students earn an 86 on their homework score when using ChatGPT

Variables

Continuous variable—the homework grade

Assumptions

In addition to using one continuous variable and one population mean, we make two
assumptions to generate valid results:

1. Normal distribution: The continuous variable, homework score in this example, should be
approximately normally distributed within each category. It only needs to be approximately normally
distributed since minor violations of normality do not affect the results.

2. Sample observations are random: Sample data must be selected randomly. (Refer to Chapter 2 on
sample selection techniques.)



Procedures using commands

Using a do-file, we would run the commands below:

ttest grade==86

Procedures using menus

Using menus in Stata, we would click on the sequence listed below that would bring us to a
Dialog Box where we would select the variable “grade” and click on “One-sample.” We would
also fill in “86” for the hypothesized mean as displayed.

Statistics → Summaries, tables, and tests → Classical tests of hypotheses → t tests (mean-
comparison tests)

8.5 INTERPRETING THE OUTPUT
Figure 8.4 illustrates the results of our one-sample t test. We can see from the table that the average
homework score in our sample of 30 students is 89.4 with a standard deviation of 5.7. When comparing
these results with the hypothesized mean of 86, we turn to the t statistic of 3.25 and the hypotheses on
the last two lines of output. The first hypothesis on the left (Ha: mean < 86) is that the mean or average
is less than 86. The second hypothesis (Ha: mean != 86) is that the mean does not equal 86, and the
third hypothesis (Ha: mean > 86) is that the mean is greater than 86. Since we typically want to consider
the extreme values on either side of the average, as discussed in the previous chapter, we use the
hypothesis that the mean is not equal to 86. Using that information, we see that when the null
hypothesis is true (that the average is 86), the probability of observing a t statistic greater than 3.25 or
less than −3.25 is less than 0.0029. Because this is less than 0.05, our alpha level, we reject the null
hypothesis that the average homework score is 86.

Description

Figure 8.4 Stata Output For The One-Sample t Test

We can also examine the confidence interval in Figure 8.4. In Chapter 7, we learned that 95% of all
sample means should fall within roughly two standard errors of the mean when the population is
normally distributed. The exact number is 1.96 standard errors of the mean. To obtain the 95%
confidence interval for the population mean, we would then multiply 1.96 by the standard error of the



mean and add this to the sample mean to get the upper end of the confidence interval. For the lower
end, we would then multiply −1.96 by the standard error of the mean and add this to the sample mean.
In this chapter, however, we don’t know the population standard deviation. We therefore have to use the
t distribution. With a sample size of 30, we first calculate the “degrees of freedom” as the sample size
minus 1 or 29 degrees of freedom. Degrees of freedom is a statistical term that indicates the number of
observations that are free to vary. In other words, we could change 29 of the values in the sample and
still get the same mean of 89.4 as long as we control or set the last value so that the mean is 89.4.

We can then use Appendix 6, which shows the critical values of the t distribution, to find the exact t
statistic that would provide the area under the curve that represents 95% of all observations. With 29
degrees of freedom and the area under the two tails adding up to .05, we see a t value of 2.05. This
would mean that 95% of all observations fall between −2.05 and +2.05 standard errors of the mean on
either side of the sample mean. The confidence interval would then be calculated as follows:

Lower end = 89.4 + (−2.05 × 1.04) = 87.27

Upper end = 89.4 + (2.05 × 1.04) = 91.53

With this information, we can say that we are 95% confident that the true value of the average
homework score is in the range of 87.27 to 91.53. The confidence interval can be used in place of a p
value to test a hypothesis. In other words, if the confidence interval does not contain the null hypothesis
value (86 in this case), then we can say that the results are statistically significant. As described in
Chapter 7, the American Statistical Association wrote in 2016 that confidence intervals should be used
in addition to p values. In fact, many researchers argue that the confidence interval is preferred because
it offers a range of values instead of providing a cutoff where we determine if our findings are statistically
significant.

We can illustrate the confidence interval in Figure 8.5 This figure shows the distribution of all possible
sample means of 30 students when the average is 89.4 and the standard error of the mean (the
standard deviation of all possible sample means) is 1.04, as calculated previously. The shaded areas
illustrate that the areas to the right of 91.5 (or equal to 91.5) and to the left of 87.3 or equal to 87.3 is
equal to 5% of all of the area under the curve.



Description

Figure 8.5 Distribution of all possible sample means of 30 students

8.6 PRESENTING THE RESULTS
Presenting the results for a nontechnical audience

To present these results to a lay audience who may not be familiar with statistical tests, we could write
the following:

Based on our sample of 30 students, we found that the average homework score among 30
students who had used ChatGPT to generate and practice problems was 89. This was a
statistically significant difference compared to the average homework score of 86 in previous
semesters.

Presenting the results in a scholarly journal

In a peer-reviewed journal, we would include more information. These results could be explained as
follows:

Using a one-sample t test, we examined the average homework score of 30 college students
enrolled in a data analysis course where they used ChatGPT to generate and practice
problems. Our results showed an average score of 89.37 (SD = 5.67). There was a statistically
significant difference between our result and the homework score from previous semesters of
86, t(29) =3.25, p = 0.00.

8.7 ESTIMATING A POPULATION PROPORTION FROM A
SAMPLE PROPORTION
Let’s suppose that instead of wanting to examine the average homework score after using ChatGPT, we
want to determine if the proportion of students using ChatGPT is equal to a hypothesized proportion of



75%. In Chapter 7, we used an example where we knew the population proportion and wanted to know
if a sample proportion would be the same a few years later. In particular, we saw that 58% of voters
voted for a candidate and we wanted to know if the same proportion would vote for the candidate for a
second term. To estimate the z-score, we used the following formula:

Z =

p− π

√

π(1−π)

n

In many cases, we won’t know the population parameter and may want to estimate it with a sample
proportion. Or, as in this example, we have a hypothesized population proportion and use a sample to
determine the likelihood that the hypothesized proportion is accurate. To do this analysis, we would use
the same format as in the previous equation but would need to use the sample proportion in the
denominator as follows:

Z =

p− π

√

p(1−p)

n

As described above, we assume that 75% of students at one college are using ChatGPT to help study
for exams. We could then draw a sample of 300 students that shows that 69% of students in the sample
are using ChatGPT to help them study for exams. Filling in the formula, we would see that our z-score
would be as follows:



Z =

. 69−. 75

√

.69(1−.69)

300

= −2.22

As in Chapter 7, we would then use a z-table or online calculator to determine the probability of
observing 0.69 if the true proportion was 0.75. Using an alpha level of 0.05, we would see that the
probability of observing a value equal to or greater than 2.22 or less than or equal to −2.22 is 0.0139.
We would therefore reject the null hypothesis that the proportion of students using ChatGPT is equal to
.75. We could also calculate the 95 percent confidence interval as 0.69 +/− (1.96 × 0.027) or the sample
proportion plus and minus 1.96 (the number of standard deviations on either side of the sample
proportion that would encompass 95% of all proportions from repeated samples) multiplied by the
standard error of the proportion (i.e., the denominator of the z-score). This gives us a confidence interval
of 0.64 to 0.74. Assuming that the variable name for the whether someone used ChatGPT is “Chat,”
Stata could calculate the confidence interval with the code “ci proportions Chat.”

8.8 SUMMARY OF COMMANDS USED IN THIS CHAPTER
As described in Chapter 4, this last section of each chapter summarizes the hypothesis, test
procedures, and Stata code used in the chapter (Tables 8.2 and 8.3). They are also summarized in
Appendices 1 and 2.



Chapter
Title Null Hypothesis Test

Info
Known/

Type of
Variables

Procedures/Interpretation

7: The
Normal
Distribution

There is no difference in
SAT scores among those
students who took a
preparatory course and
those who did not.

z-score
or
standard
score

Single
sample

Know
population
mean

Know
population
standard
deviation

1. Standard error of mean = 
(σ/√n)

2. Standard score ((X−
µ)/Standard error of mean)

3. Look up percentages for
standard score using normal
distribution

4. When the null hypothesis is true,
the probability of observing a z-
score greater than +1.41 or less
than −1.41 is less than 0.16. Do
not reject the null hypothesis.



Chapter
Title Null Hypothesis Test

Info
Known/

Type of
Variables

Procedures/Interpretation

8. One-
sample t
test

Students who use
ChatGPT to generate
and practice problems
earn 86 on their
homework score.

One-
sample t
test

Single
sample

Know the
population
mean

Don’t
know the
population
standard
deviation

1. Standard error of mean = 
(s/√n)

2. Standard score ((X  − µ)/
Standard error of mean)

3. Look up area for t statistic When
the null hypothesis is true, the
probability of observing a t
statistic greater than 3.25 or less
than −3.25 is less than 0.0029.
Reject the null hypothesis.

Function Code
One-sample t test ttest grade==86
Estimating a population proportion from a sample proportion ci proportions Chat

EXERCISES
1. Your local takeout restaurant claims that their food is delivered in 20 minutes. You decide to test

their claim and order food from them 36 times over the next 3 months. On average, the food is
delivered in 23 minutes with a standard deviation of 5 minutes.

a. What is the null hypothesis?
b. Would you reject or not reject the null hypothesis assuming an alpha level or p critical of 0.05?

Show your work to support your decision.
2. Based on your answer to Question 1, construct a 95% confidence interval for the true value of the

delivery time.
3. The legal drinking age in the United States is 21 years. Many people, however, try alcohol before

they turn 21. Use the National Survey on Drug Use and Health from 2015 to test whether the age
when Americans first try alcohol (alctry) is 21 years. Before you run the test using Stata, use the
command tab alctry. Notice that there are categories related to missing data—985 bad data, 991
never used alcohol, 994 don’t know, 997 refused, or 998 blank. Next run the command sum alctry.
You will notice that the mean age for first trying alcohol is 292 years, which doesn’t make sense.
You should also notice that the maximum value is 998. To remove these missing data from your
test, include the command if alctry < 72 at the end of your command since 71 was the oldest age
reported.



a. What is your null hypothesis?
b. Would you reject or not reject your null hypothesis? Explain your decision using your output

and add a screenshot of your output as part of your response
c. Explain the 95% confidence interval in your output.

4. Based on your results for Question 3, write a few sentences that would explain your results to a
nontechnical audience. Then write a few sentences to present your results in a scholarly journal.

5. The average college acceptance rate in 2013 according to the College Results online data set was
72.5%. Since that time, many news articles have reported on changing demographics in the United
States that will lead to fewer students entering college. You want to know if acceptance rates will
rise as colleges compete for a smaller pool of applicants. Use the “College Score Card April 2023 –
USNews” data set to test if the acceptance rate (adm_rate) is still 72.5%. In the data set, the
acceptance rate is expressed on a scale from 0 to 1. You will need to use 0.725 for your test. Show
your Stata output, and then write a few sentences to explain your results for a scholarly journal.

KEY TERMS

critical values

degrees of freedom

hypothesis

normal distribution

null hypothesis

one-sample t test

research question

t distribution

variables

Descriptions of Images and Figures
Back to Figure
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Students can use AI chatbots to break down a complex assignment into smaller step.

Since ChatGPT can engage in conversation and generate essays, computer codes, charts and graphs
that closely resemble those created by humans, educators worry students may use it to cheat. A
growing number of school districts across the country have decided to block access to ChatGPT on
computers and networks.

As professors of educational psychology and educational technology, we’ve found that the main reason
students cheat is their academic motivation. For example, sometimes students are just motivated to get
a high grade, whereas other times they are motivated to learn all that they can about a topic.

The decision to cheat or not, therefore, often relates to how academic assignments and tests are
constructed and assessed, not on the availability of technological shortcuts. When they have the



opportunity to rewrite an essay or take a test if they don’t do well initially, students are less likely to
cheat.

We believe teachers can use ChatGPT to increase their students’ motivation for learning and actually
prevent cheating. Here are three strategies for doing that.

Back to Figure

On the top center is a box labeled "What is the right test?" which is divided into three main branches:
"Comparing means," "Relationships between two variables," and "Effect of multiple variables on one
dependent variable."

Under "Comparing means", there are two sub-branches: "Sample mean to population mean" and
"Comparing sample means."

"Sample mean to population mean" is further divided into "Know population standard deviation?" and
"Don’t Know population standard deviation?".

"Know population standard deviation?" leading to either "Z test" and "Don’t Know population standard
deviation?" leads to "One-sample t test."

"Comparing sample means" is divided into "Two independent sample means" and "Three or more
independent means."

"Two independent sample means" leading to "2 independent samples t test" and "Three or more
independent means" leading to "ANOVA."

Under "Relationships between two variables", there is a branch asking "What type of variables?": "Two
nominal or ordinal" leading to "Chi-square" and "Two or more continuous" leading to "Correlation."

Under "Effect of multiple variables on one dependent variable", there is a branch asking "What type of
independent variable?": "Continuous" and "Nominal."

"Continuous" leads to "Linear regression" and "Nominal" leads to "Logistic regression."

Back to Figure

The x-axis is labeled "X" and ranges from -4 to 4, while the y-axis ranges from 0 to 0.4. Normal
distribution is represented by a solid line curve, centered at 0 with the highest peak. t-distribution with
n=4 is depicted by a dashed line, with a slightly wider shape and lower peak than the standard normal
curve. t-distribution with n=2 is shown with a dot-dashed line, having the widest spread and lowest peak,
indicating higher variability. Each curve illustrates how t-distributions become more similar to the
standard normal distribution as the degrees of freedom increase.

Back to Figure

.ttset grade==86

One-sample t test

Variable obs Mean Std. err. Std. dev [95% conf. interval]
grade 30 89.36667 1.035556 5.671972 87.24872 91.48462

mean = mean(grade)

H0: mean = 86



t = 3.2511

Degrees of freedom = 29

Ha: mean < 86

Pr(T<t) = 0.9985

Ha: mean != 86

Pr(|T|> |t|) = 0.0029

Ha: mean > 86

Pr(T>t) = 0.0015

Back to Figure

The mean score (X-bar) is 89.4 and the standard deviation (Sx) is 1.04. The curve peaks around the
mean and tapers off towards both ends. Two vertical dashed lines indicate scores of 87.3 and 91.5,
framing the central portion of the distribution. The areas outside these lines are shaded to represent a
total area of 0.05, suggesting these regions contain 5% of the probability mass under the curve."



9 TESTING A HYPOTHESIS ABOUT TWO
INDEPENDENT MEANS



CHAPTER PREVIEW

Steps Example
Research
question

Did states with Democratic electors in the 2020 presidential elections have a
greater number of mask-mandated days during the coronavirus (COVID-19)
pandemic from 2020 to 2022 compared to states with Republican electors?

Null
hypothesis

There is no difference in the number of mask-mandated days during the
COVID-19 pandemic between states with Democratic and Republican
electors in the 2020 presidential election.

Test Two independent-samples t test
Types of
variables One continuous variable: number of mask-mandated days (MaskDays)

One categorical variable with two categories: 1 “Democrat,” 2 “Republican”
(ElectorParty)



Steps Example
When to use

Two samples

Two populations

Population standard deviation is unknown

Assumptions
Independence of observations

Normal distribution

Homogeneity of variances

Additional
tests needed

Equality of variances

Stata code:
generic

ttest continuousvar, by(categoricalvar)

Stata code:
example

ttest MaskDays, by(ElectorParty)

9.1 INTRODUCTION
According to Figure 9.1, the response to the COVID-19 pandemic was largely based on partisan politics.
Democrats preferred stricter policies while Republicans preferred fewer restrictions. These policies
included the length of time when masks were mandatory, the ability to gather in groups, and the
mandatory shutdown of private businesses, such as restaurants, gyms, and theaters. Using statistics,
we can determine whether these policies were correlated with politics at the state level. Although all
states will have Democrats, Republicans, and independent voters, one of the best ways to determine
the largest proportion of voters in a given state at the time of a presidential election is to examine the
party of its Electoral College votes. All states are awarded Electoral College votes during presidential
elections based on their representation in the Senate and House of Representatives, which, in turn, is
based on the population of each state. Once the votes are counted in each state, 48 of the 50 states
award their entire slate of electoral college votes to whomever won the popular votes. (Only Maine and
Nebraska allow Electoral College votes to be divided among candidates, but in the 2020 elections,
Maine’s votes were awarded to the Democratic Party and Nebraska’s votes were awarded to the
Republican Party.) So if a Republican wins the popular vote in Alabama, the nine Electoral College
votes allotted to Alabama are awarded to the Republican Party.



Description

Figure 9.1 Article

Source: VanDusky-Allen and Shevtsova (2021).

After identifying each state as Republican or Democrat based on the party of their Electoral College
votes in November of 2019, we can then proceed to examine the number of mask-mandated days in
each state from the start of the COVID-19 pandemic through March 28, 2022. This will allow us to
determine if there was a statistically significant difference in mask-mandated days based on political
ideology. This type of test is a two independent-samples t test, which is described next.

In this chapter, we will learn how to test for a statistically significant difference between two independent-
sample means drawn from two populations. The test uses one continuous variable (number of mask-
mandated days) and one categorical variable with two categories (Democrat and Republican). We will
use data from Ballotpedia on state-level mask requirements and the 2020 Electoral College results as
reported in the National Archives.1 Other examples, along with a review of assumptions, procedures,
and interpretation of the output, are included later.

9.2 WHEN TO USE A TWO INDEPENDENT-SAMPLES T TEST
There are many situations when we may want to compare two means. In this chapter, we only consider
cases where there are two independent samples. This means that individuals or objects are assigned to
one of two groups. Table 9.1 offers examples from different fields and identifies the continuous variable
and the categorical variable with two groups.



Field Research Question Null Hypothesis Continuous
Variable

Categorical
Variable

Criminal
Justice

Are men more likely to
commit delinquent
offenses than women?

There is no difference in the
number of delinquent
offenses committed by men
and by women.

Number of
offenses
committed

1. Men
2. Women

Economics Do men earn more
than women in the
same job with the
same set of skills?

There is no difference
between salaries of men
and women in the same job
with the same skill level.

Annual
salary 1. Men

2. Women

Political
Science

Are Democratic voters
younger than
Republican voters?

There is no difference in the
average age of Democrats
and Republicans.

Age
1. Democrats
2. Republicans



Field Research Question Null Hypothesis Continuous
Variable

Categorical
Variable

Psychology Does multitasking while
studying for an exam
have an impact on a
student’s final score?

There is no difference in the
final scores between
students who multitask and
those who do not.

Exam score
1. Those who

multitask
2. Those who

do not
multitask

Public
Health

Do women who smoke
give birth to infants with
a lower birth weight?

There is no difference in
birth weight of children of
pregnant mothers who
smoke and those who do
not.

Birth weight
1. Pregnant

mothers
who smoke

2. Pregnant
mothers
who do not
smoke

Sociology Do Catholics or
Protestants spend
more time volunteering
for community work?

There is no difference in the
number of hours per week
that Catholics and
Protestants spend
volunteering.

Hours per
week
volunteering

1. Catholics
2. Protestants

We can also consult the decision tree in Figure 8.2 and Appendix 3 when we are unsure about which
test to use. Since we are comparing the means, we would follow the path on the left for “comparing
means.” Next, we would choose “comparing sample means” since we now have two sample means in
this case—the average number of mask-mandated days in states with Democratic and Republican
electoral votes. Underneath the “two independent sample means” is the two independent-samples t
test.

9.3 CALCULATING THE T STATISTIC
To test for a significant difference between the two means, we must calculate a t statistic. Although Stata
will calculate the t statistic in the example that follows in this section, it is important to understand how it
is calculated in order to interpret its meaning. It is expressed in Equation 9.1 below.

(9.1)

t =

(X

1

−X

2

) − 0

S

X

1

−X

2

¯̄

¯̄



The numerator is simply the observed difference between the two means and how much greater it is
than zero, which is the hypothesized difference. The denominator is the standard error of the mean
difference. This is calculated as follows:

(9.2)
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where

S1
2 is the variance for the first sample

S2
2 is the variance for the second sample

n1 is the sample size for the first sample

n2 is the sample size for the second sample

Combined, the full formula tells us how many standard error units the observed difference is from zero.
As described in Chapter 7, this indicates how unusual our results are if the true difference is zero.

9.4 CONDUCTING A T TEST
Using the state-level mask requirements in response to the COVID-19 pandemic and the National
Archives data on the 2020 Electoral College results, we will examine the number of mask-mandated
days in Democratic and Republican states based on their Electoral College votes in the 2020
presidential election. We can begin by generating a summary of these values using the commands that
we learned in Chapter 6, as illustrated in Figure 9.2.

Description

¯̄



Figure 9.2 Mean and standard deviation of mask-mandated days in states with
democratic and republican electors in the 2020 presidential election.

Based on these results, we can see that, on average, mask-mandated days are much higher in
Democratic-leaning states and they also have a higher standard deviation than Republican-leaning
states. We now want to use the data to test whether this is a statistically significant difference, beginning
with our research question.

Research question

Did states with Democratic electors in the 2020 presidential elections have a greater number of
mask-mandated days during the COVID-19 pandemic from 2020 to 2022 compared to states
with Republican electors?

Null hypothesis

There is no difference in the average number of mask-mandated days during the COVID-19
pandemic between Democratic- and Republican-leaning states.

Variables

Continuous variable—number of mask-mandated dates (MaskDays)

Categorical variable—ElectorParty (Democrat = 1, Republican = 2)

Assumptions

As described earlier, to use the two independent-samples t test, you must have one continuous
variable and one categorical variable with two categories. We also make the following
assumptions to generate valid results:

1. Independence of observations: Each individual can appear in only one of the two groups. In
addition, they can only appear once in each group.

2. Normal distribution: The dependent variable—the number of mask-mandated days, in this
example—should be approximately normally distributed within each category. It only needs to be
approximately normally distributed since minor violations of normality do not affect the results.
Normality can be tested with the Shapiro–Wilk test.

3. Homogeneity of variances: The variances of the two groups must be equal. This is tested with
Levene’s test. If the variances are not equal, Stata will generate output to show the results with
unequal variances assumed with the command unequal.

Stata code for doing a t test

Using a do-file, we would run the commands below.



robvar MaskDays, by(ElectorParty) 
ttest MaskDays, by(ElectorParty) 
esize twosample MaskDays, by(ElectorParty) cohensd

Note that we would add the unequal option to the ttest and esize commands if the robust
variance test indicated a significant difference in the variances of the two variables.

Using menus in Stata, we would click on the sequence listed below that would bring us to a
dialog box. In the dialog box, we would select the variables “MaskDays” and “ElectorParty” in
the two drop-down menus.

Statistics → Summaries, tables, and tests → Classical tests of hypotheses → Robust equal-
variance test

We would then click on the following sequence to bring us to a second dialog box. Depending on the
results from the equality of variance test, we would leave the box “unequal variances” either checked or
unchecked. This is explained further in Section 9.4 on interpreting the output.

Statistics → Summaries, tables, and tests → Classical tests of hypotheses → t test (mean-
comparison test)

Finally, we could click on the following sequence and fill in the variable names in the drop-down boxes.

Statistics → Summaries, tables, and tests → Classical tests of hypotheses → Effect size based
on means comparison

9.5 INTERPRETING THE OUTPUT
The first step to determine if there is a significant difference in the number of mask-mandated dates is to
check for equality of variances. As we saw in the preview to the chapter, homogeneity of variances is
one of the assumptions for this test. If the variances are not equal, this will increase the likelihood of
rejecting the null hypothesis when it is true. We, therefore, first test the assumption, and then make a
correction if the variances are unequal.

To test for equality of variances, we run the robust equal-variance test, which is known as Levene’s test
of equality of variances.2 Figure 9.3 shows the results, including the F statistic and the probability of
observing the F statistic when the variances are equal. In this example, we only need to interpret the p
value (labeled as Pr) at the end of the row labeled W0. This row is testing the variance relative to the
mean of the variable.3 Because the value is greater than 0.05, we would not reject the null hypothesis
that the variances are equal.



Description

Figure 9.3 Istata Output for Equality of Variance Test

Once we have determined that the variances are equal or unequal, we then run the t test. In this
example, we do not need to specify equal variances in the Stata commands since Stata assumes that
they are equal. If we had rejected the null hypothesis, then we would have added “unequal” at the end
of the command line. The results are illustrated in Figure 9.4. In the first column, we see the average
number of mask-mandated days for Democratic states (405.88) and Republican states (146.56) and the
overall average number of mask-mandated days (276.22). The difference in the average mask-
mandated days by Democratic and Republican states is listed as “diff” at the bottom of the “Mean”
column (259.32). To test whether this difference is statistically significant, we examine the t value and
the significance level. According to the output, the probability of observing a t value greater than 5.1 or
less than −5.1 is less than 0.05. We therefore reject the null hypothesis and say that there is a
statistically significant difference in the average mask-mandated days between Democratic and
Republican states.

Description



Figure 9.4 Stata Output for two-Sample t Test With Equal Variances

Notice that the degrees of freedom are n − 2, or 50 − 2, which is equal to 48. If the variances had been
unequal, we would then use Satterthwaite’s degrees of freedom, which would take into account the
unequal variances. In either case, the degrees of freedom would be printed under the t statistic.4

We can also examine the confidence interval from Figure 9.4, which we learned how to generate in
Chapter 8. Notice that the 95% confidence interval for the mean difference is from 156.8 to 361.8. This
suggests that we are 95% confident that the true value of the difference is within that range.

In addition to examining the significance level of the difference in the two means, we may also want to
examine the effect size, or the magnitude of the difference between the two groups. There are several
measures that can estimate the effect size, but Cohen’s d is commonly used. It is calculated as the
difference between two means divided by the pooled standard deviation for the two independent
samples. The results are illustrated in Figure 9.5. According to Cohen (1988), effect sizes are defined as
small when d = 0.2, medium when d = 0.5, and large when d = 0.8. Since the absolute value of Cohen’s
d in Figure 9.5 is 1.4, it is a large effect.

Description

Figure 9.5 Cohen’s d

9.6 PRESENTING THE RESULTS
Presenting the results for a nontechnical audience

To present these results to a lay audience who may not be familiar with statistical tests, we could write
the following:

On average, there were 276 mask-mandated days per state during the COVID-19 pandemic.
Our results show, however, that there is a statistically significant difference between the
average mask-mandated days in Democratic states and Republican states. Democratic states
had 406 mask-mandated days on average compared with Republican states, which had 147
mask-mandated days on average.

Presenting the results in a scholarly journal

To present these results in a peer-reviewed scholarly journal, we would need to include more
information. This could be written as follows:



To test the hypothesis that Democratic and Republican states had the same number of mask-
mandated days during the COVID-19 pandemic, we used a two independent-samples t test.
The results indicated that on average, Democratic states had 405.88 mask-mandated days (SD
= 42.56), compared with Republican states, which had 146.56 mask-mandated days (SD =
28.08). This was a statistically significant difference at the 0.05 level (t(48) = 5.09, p < 0.05).
Examining the effect size, or magnitude of the difference, Cohen’s d revealed that the
difference between the means is a large effect (d = 1.44).

9.7 SUMMARY OF COMMANDS USED IN THIS CHAPTER
As described in Chapter 4, this last section of each chapter summarizes the hypothesis, test,
procedures, and the Stata code used in the chapter (Tables 9.2 and 9.3). These are also summarized in
Appendices 1 and 2. In this chapter, we include the information from Chapters 7 and 8 so that you can
see how the procedures differ depending on the test and information available.
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Title Null Hypothesis Test

Info
Known/Type
of Variables

Procedures/Interpretation



Chapter
Title Null Hypothesis Test

Info
Known/Type
of Variables

Procedures/Interpretation

7. The
Normal
Distribution

There is no difference in
SAT scores among those
students who took a
preparatory course and
those who did not.

z score or
standard
score

Single
sample

Know
population
mean

Know
population
standard
deviation

1. Standard error of
mean = (σ/√n)

2. Standard score ((X−
μ)/Standard error of
mean)

3. Look up percentages
for standard score
using normal
distribution

When the null hypothesis is
true, the probability of
observing a z score greater
than +1.41 or less than
−1.41 is less than 0.16. Do
not reject the null
hypothesis.

8. Testing a
Hypothesis
About a
Single Mean

Students who use
ChatGPT to generate and
practice problems earn 86
on their homework score.

One-sample
t test Single

sample

Know
population
mean

Don’t know
population
standard
deviation

1. Standard error of
mean = (s/√n)

2. Standard score ((X−
μ)/Standard error of
mean)

3. Look up area for t
statistic

When the null hypothesis is
true, the probability of
observing a F value greater
than 3.25 or less than
−3.25 is less than 0.0029.
Reject the null hypothesis.

¯

¯



Chapter
Title Null Hypothesis Test

Info
Known/Type
of Variables

Procedures/Interpretation

9. Testing a
Hypothesis
About Two
Independent
Means

There is no difference in
the number of mask-
mandated days among
Democratic and
Republican states.

Two
independent-
samples t
test

Two samples

Two
populations

1. Standard error of the
mean difference = 

√

s

2

1

n

1

+

s

2

2

n

2

2. Calculate t statistic = 
X

1

−X

2

√

s

2

1

n

1

+

s

2

2

n

2

3. Look up area for t
statistic

When the null hypothesis is
true, the probability of
observing a value greater
than 5.1 or less than −5.1
is less than 0.01. Reject
the null hypothesis.

 Variances of the two
populations are equal.

Levene’s
test of
equality of
variances

 
1. Use F test from output

When the null hypothesis is
true, the probability of
observing an F value at
least as large as 1.56 is
less than 0.22. Do not
reject the null hypothesis.

 

Function Code
Table table ElectorParty, stat(mean MaskDays) nformat(%5.0g) stat(sd

MaskDays)
Test for equal variances robvar MaskDays, by(ElectorParty)
Two independent-means
test

ttest MaskDays, by(ElectorParty)

Cohen’s d effect size test esize twosample MaskDays, by (Elector) cohensd

¯̄



EXERCISES
1. You want to determine if men and women watch the same number of hours of television per week.

Assume that the robust variance test determined that there was no statistically significant difference
in the variances to answer this question.

 Mean Hours of TV Watched per Week Sample Size Variance
Men 14 20 100
Women 6 8 88

a. Based on the information in the table, determine if this is a statistically significant difference.
(Hint: The degrees of freedom would be equal to n1 + n2 − 2).

b. Use the information to calculate a 95% confidence interval of the mean difference.
2. Use the National Survey on Drug Use and Health 2015 to determine if there is a difference in the

average age when men and women first try alcohol by following the instructions below.
a. Determine if there is a significant difference in the average age when men and women (irsex)

first try alcohol (alctry). For each command that you use, you will need to eliminate all
observations above the age of 71 since there are observations with large numeric codes that
represent bad data, individuals who never used alcohol, and individuals who didn’t know or
refused to answer. To do this, include the code “. if alctry < 72” at the end of each command
line.

b. Use Cohen’s d to examine the effect size, again using “, if alctry < 72” at the end of the
command line.

c. Write the results of your findings for a nontechnical audience.
d. Write the results of your findings for a journal article.

3. One of the arguments for school uniforms is that they will deter crime and increase student safety.
We can explore this by using the School Survey on Crime and Safety data set from the 2015–2016
school year, which offers data on school characteristics, crimes, practices, and policies. The data
represent 2,092 public schools in the United States. In particular, we can look at the total number of
disciplinary actions at schools that do and do not require uniforms. One question, however, is
whether uniforms lead to fewer incidents (a negative relationship) or more incidents lead schools to
require uniforms (a positive relationship). The possibility that two variables may influence each
other makes it difficult to identify and measure the causal relationship, a problem called
endogeneity that is discussed in Chapters 12 and 13.

Using the pu_ssocs16 data set, generate a table that shows the average, the standard deviation,
and the sample size of the total number of disciplinary actions (DISTOT16) among schools that
require and those that do not require uniforms (C0134). Format the table so that there are two digits
to the right of the decimal point.

a. Determine if there is a significant difference in the average number of disciplinary actions
between schools that require and those that do not require uniforms.

b. What is the null hypothesis?
c. Can you reject the null hypothesis? Use statistics to support your conclusion.

4. In this chapter, we examined whether there was a difference in the average number of mask-
mandated days in states with Republican and Democratic electors in the 2020 presidential election
in the United States. We can now examine the COVID-19 rate, or the number of COVID-19 cases
per 100,000 people, in each state based on the party of the electors and also based on the party of



the state’s governor in 2020. Keep in mind, however, that we can’t assume that the COVID-19 rate
can be fully explained by the number of mask-mandated days. Other factors, such as the
vaccination rate, the age composition of the population, and the proportion of people who are
immunocompromised, for example, would play a large role in determining the COVID-19 rate in
each state.

a. Using the data set, Covid.dta, test whether there is a significant difference in the average
COVID-19 rate (CovidRate) in states based on the party of the electors in the 2020 presidential
election (ElectorParty). Include a test of the effect size, and write the results of your finding for
a nontechnical audience.

b. Use the Covid.dta data set to test whether there is a significant difference in the average
COVID-19 rate (CovidRate) in states based on the party of the governor in 2020
(Governorparty). Include a test of the effect size, and write the results of your finding for a
journal article.

KEY TERMS

Cohen’s d

independence of observations

Levene’s test

normal distribution

null hypothesis

significance level

two independent-samples t test

variables

Descriptions of Images and Figures
Back to Figure
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The COVID-19 pandemic seems to have widened the partisan divide between Democrats and
Republicans on health care.

Throughout the COVID-19 pandemic, a partisan divide has existed over the appropriate government
response to the public health crisis. Democrats have been more likely to favor stricter policies such as
prolonged economic shutdowns, limits on gathering in groups and mask mandates. Republicans overall
have favored less stringent policies.

As political scientists and public health scholars, we’ve been studying political responses to the
pandemic and their impacts. In research published in the summer of 2020, we found that “sub-
governments,” which in the U.S. means state governments, tended to have a bigger impact on the
direction of pandemic policies than the federal government. Now, as data on last year’s case and death
rates emerge, we’re looking at whether the political party in the governor’s office became a good
predictor of public health outcomes as COVID-19 moved across the country.



Looking at states’ COVID-19 case and death rates, researchers are finding the more stringent policies
typical of Democratic governors led to lower rates of infections and deaths, compared to the the
pandemic responses of the average Republican governor. In preparation for future pandemics, it may be
worth considering how to address the impact that a state government’s partisan leanings can have on
the scope and severity of a public health crises.

Back to Figure

.table ElectorParty, stat(mean MaskDays) nformat(%5.0g) stat(sd MaskDays)

 Mean Standard deviation
Party of Electors from 2020 Election   
Democrat 406 213
Republican 147 140
Total 276 221

Back to Figure

. robvar MaskDays, by (ElectorParty)

Party of Electors from 2020 Election Summary of No. of mask mandate days as of 8/15/22
 Mean Std. dev. Freq.
Democrat 405.88 212.81454 25
Republica 146.56 140.39174 25
Total 276.22 221.34019 50

W0 = 1.5566141, df (1, 48), Pr F = 0.21821431

W50 = 1.4663531, df (1, 48), Pr F = 0.23185058

W10 = 1.9130489, df (1, 48), Pr F = 0.17302516

Back to Figure

.ttest MaskDays, by (ElectorParty)

Two-sample t test with equal variances

Group Obs Mean Std. err. Std. dev. [95% conf. interval]
Democrat 25 405.88 42.56291 212.8145 318.0345 493.7255
Republic 25 146.56 28.07835 140.3917 88.60914 204.5109
Combined 50 276.22 31.30223 221.3402 213.3158 339.1242
diff  259.32 50.99014  156.7974 361.8426

Diff = mean (Democrat) - mean (Republic)

t = 5.0857

H0: diff = 0

Degrees of freedom = 48

Ha: diff< 0



Pr(T< t) 1.0000

Ha: diff != 0

Pr(|T|> (|t| = 0.0000

Ha: diff > 0 Pr(Tt)=0.0000

Pr(T> t) 0.0000

Back to Figure

. esize twosample MaskDays, by (Elector) cohensd

Effect size based on mean comparison

Obs per group:

Democrat = 25

Republican = 25

Effect size Estimate [95% conf. interval]
Cohen’s d 1.43845 .8082568 2.056732



10 ONE-WAY ANALYSIS OF VARIANCE



CHAPTER PREVIEW

Steps Example
Research
question

Are children from wealthier families more likely to earn higher scores on the
SAT than those from lower income families?

Null
hypothesis

There is no difference in SAT scores among college students from families
with different levels of income.

Test One-way analysis of variance
Types of
variables One dependent continuous variable: SAT scores (SAT)

One independent categorical variable with three or more categories: 1 =
“Less than $60,000,” 2 = “$60,000 to $99,999,” 3 = “$100,000 to $149,000”...
(FAMILYINC)

When to use Comparing three or more means
Assumptions

1. Each sample is an independent random sample.
2. Normal distribution of the continuous variable
3. Homogeneity of variances

Additional
tests needed

Bartlett’s test of equality of variances

Stata code:
generic

Oneway continuousvar categoricalvar



Steps Example
Stata code:
example

oneway SAT FAMILYINC

10.1 INTRODUCTION

Description

Figure 10.1 Article

Source: Churchill (2023). “The SAT and ACT are less important than you might think.” The Conversation, January 25,
2023.

Many studies have shown that children from higher income families earn higher scores on the
Scholastic Aptitude Test (SAT). There are several reasons for this, including the fact that wealthier
families can afford expensive preparation courses or private tutors for their children. This gap in test
results has led to several changes. The College Board, which administers the test, has revised the exam
to level the playing field by eliminating obscure vocabulary and using texts that are more typical of what
students use in school. They have also offered free online tutoring. But the biggest change is that 80%
of colleges no longer require the SAT or ACT tests and some won’t even consider it. This change was
partly due to the COVID-19 pandemic, when it became unsafe to take exams in public locations. But it
was also a reconsideration of the value of the tests and their inability to accurately predict the likelihood
of success in college

In this chapter, we will learn how to test for a statistically significant difference between three or more
means. The test is called a one-way analysis of variance (ANOVA). It is used with one continuous
variable (SAT scores in the previous example) and one categorical variable with three or more
categories (different family income levels). Examples from different fields are given later, along with a
review of assumptions, procedures, and interpretation of the output.

10.2 WHEN TO USE ONE-WAY ANOVA
Table 10.1 shows examples from different fields where you may have three or more means. Each
categorical variable must have at least three categories, and only one continuous variable is used. In all
of these examples, we are testing the impact of the categorical variable on the continuous variable. This



means that the continuous variable—SAT scores, for example—is the dependent variable since its value
will depend on family income levels. Family income is then the independent variable.

Field Research Question Null Hypothesis Continuous
Variable

Categorical
Variable

Criminal
justice

Does birth order have an
effect on the number of
self-reported delinquent
acts?

There is no
difference in the
average number of
self-reported
delinquent acts by
birth order.

Number of
self-reported
delinquent
acts

1. First born (or
only child)

2. Middle born (if
three or more
children)

3. Last born



Field Research Question Null Hypothesis Continuous
Variable

Categorical
Variable

Economics Does annual income vary
across regions in the
United States?

There is no
difference in annual
income across
regions in the United
States.

Annual
income 1. Northeast

2. Mid-Atlantic
3. South
4. Midwest
5. West

Political
science

Is voter participation
affected by the type of
government?

There is no
difference in voter
participation in
countries with
different types of
government.

Voter turnout
rate 1. Liberal

democracy
2. Communist or

postcommunist
3. Socialist

Psychology Does the type of car
ownership affect
behavior toward
bicyclists on the road?

There is no
difference in
behavior.

Number of
feet of
clearance
given to
bicyclists on
the road

1. High-end cars
2. Medium-priced

cars
3. Low-priced

cars

Public
health

Is there a difference in
average bone density
among respondents who
take three levels of
calcium supplement?

There is no
difference in bone
density.

Bone density
level 1. Low calcium

intake
2. Medium

calcium intake
3. High calcium

intake

Sociology What is the average
number of children
among families from
different religions?

There is no
difference in the
average number of
children by religion.

Number of
children 1. Christians

2. Muslims
3. Hindus
4. Buddhists

10.3 CALCULATING THE F RATIO
The F ratio, which is used to determine if there is a statistically significant difference among several
means, is calculated in two parts. The first part, or numerator, estimates the between-group variability
and is expressed in Equation 10.1.

(10.1)



Numerator =

n

∑

i=1

n

i

(X

i

−X)

2

K − 1

where

ni = sample size for group i

X

i

 = average for group i

X  = the overall average of all observations

K = number of groups

Notice that the numerator examines how much the mean of each individual group differs from the overall
mean of all groups combined. This is then weighted by the sample size, n, so that larger samples are
given a greater weight. The denominator is the degrees of freedom, or the number of groups (K) minus
11. Overall, this is a measure of how much variation there is “between” the groups, or the between-
groups mean square.

The second part of the F ratio is the within-group variability. As its name suggests, we are now looking
at how much variation there is within each sample or group. This is expressed in Equation 10.2.

(10.2)

Denominator =

n

∑

i=1

s

2

i

(n

i

− 1)

n

∑

i=1

(n

i

− 1)

where

Si
2 = the variance of group i

ni = sample size for group i

In this case, the numerator adds up the variance of each group and gives weight to each variance by
multiplying by the sample size minus 1. When we then divide by the sum of the sample sizes minus 1,
we are essentially getting the average variation within the groups. It is expressed as the within-groups
mean square.

To calculate the F ratio, we then divide Equation 10.1 by Equation 10.2, which can be written as follows:



F =

Between − group variability

Within − group variability

In other words, if the variability between the groups is greater than the variability within each group, you
would expect a large F ratio. The larger the F ratio, the more likely you are to find a significant difference
in the means. Figures 10.2 and 10.3 illustrate the concept of between- and within-group variance.

Description

Figure 10.2 Between-Group Variance Is Larger Than Within-Group Variance Illustration

Source: Khatri (2014). “Analysis of Variance (ANOVA).” LinkedIn SlideShare, 9 Aug. 2014,
www.slideshare.net/snehkhatri/analysis-of-variance-anova.

Description



Figure 10.3 Within-Group Variance Is Larger Than Between-Group Variance Illustration

Source: Khatri (2014). “Analysis of Variance (ANOVA).” LinkedIn SlideShare, 9 Aug. 2014,
www.slideshare.net/snehkhatri/analysis-of-variance-anova.

10.4 CONDUCTING A ONE-WAY ANOVA TEST
As described earlier, many people criticize the use of SAT scores because of their high correlation with
income. Using the Admitted Student Questionnaire data set, we will examine the relationship between
SAT scores and family income to see if there is a statistically significant difference among SAT scores in
different income categories.

Figure 10.4 shows five income groups and the average SAT scores within each group along with the
standard deviation and the number of students in each group. We can easily see that the average SAT
score does increase as family incomes rise, but we cannot make the conclusion that there is a
statistically significant difference until we run the one-way ANOVA test, which is described next.

Description

Figure 10.4 Average Sat Score By Family Income

Research question

Are children from wealthier families more likely to earn higher scores on the SAT than those
from lower income families?

Null hypothesis

There is no difference in SAT scores among college students from families with different levels
of income.

The alternative hypothesis would be that at least one of the group means is not the same as
the others.

Variables

Continuous variable—SAT scores of combined reading and math (SAT)



Categorical variable—family income before taxes broken into five income categories
(FamilyInc)

Assumptions

As described earlier, a one-way ANOVA test is used with one categorical variable with three or
more categories and one continuous variable. We also make the following assumptions to
generate valid results:

1. Independence of observations: Each individual or observation can only appear in one of the three
or more groups. In addition, they can only appear once in each group.

2. Normal distribution: The continuous variable, SAT score, should be approximately normally
distributed within each category. It only needs to be approximately normally distributed since minor
violations of normality do not affect the results.

3. Homogeneity of variances: The variances of the three or more groups must be equal. This is tested
with Bartlett’s test. For large samples, however, the equality of variances assumption is not
required.

Procedures using code

Using a do-file, we would run the commands below:

oneway SAT FamilyInc, tabulate

Procedures using menus

Using menus in Stata, we would click on the sequence listed below that would bring us to a
dialog box. In the dialog box, we would select the variables SAT and FamilyInc in the two drop-
down menus as displayed.

Statistics → Linear models and related → ANOVA/MANOVA → Oneway ANOVA

10.5 INTERPRETING THE OUTPUT
The first step to determine if there is a significant difference in SAT scores among different income
groups is to check for equality of variances. In Stata, Bartlett’s test for homogeneity of variances is
automatically included in the output. The null hypothesis is that the variance for each of the five groups
is equal. As illustrated in Output 10.5, the chi-square statistic is 159.5 and the significance level is 0.000.
Because the significance level is less than 0.05, we reject the null hypothesis that the variances are
equal. Although this means that one of the three assumptions for the one-way ANOVA is violated, the
ANOVA results are typically considered acceptable if the sample size is large and in cases where the
sample sizes are relatively equal for each group. You can, however, address the issue of unequal
variances by using alternative tests, which can be found in more advanced statistics textbooks2.

Examining the F ratio, we see that the value is 78.69 with a significance level that is less than 0.05. We
then reject the null hypothesis that there is no difference in SAT scores among college students from
families with different levels of income.



As we learned in Chapter 9, we may also want to examine the effect size or the magnitude of the
difference between the two groups. When running an ANOVA test, we would use eta-square (η2). This is
calculated as the between-groups sum of squares divided by the total sum of squares. Using the
numbers from Figure 10.5, this would be expressed as follows:

Description

Figure 10.5 Stata Output For Anova With Bartlett’s Test

η2 = Between−group sum of squares

Total sum of squares

=

10,830,385.7

120,006,882

= 0. 09

Turning this into a percentage, we can say that 9% of the variation in SAT scores can be explained by
differences in family income. Although 9% seems low, our results did show that there was a significant
difference in the mean SAT scores among income groups. Furthermore, it shows that the income
accounts for a small amount of that variation and that we would need to examine other factors. It is
important to keep in mind that insignificant or less dramatic results can be equally important when doing
research. Not being able to show a significant difference is also a result.

10.6 IS ONE MEAN DIFFERENT, OR ARE ALL OF THEM
DIFFERENT?
As mentioned earlier, the null hypothesis is that there is no difference in SAT scores among college
students from families with different levels of income. The alternative hypothesis is that at least one of
the means is not the same. Once we have rejected the null hypothesis, we may want to know which
mean or means are different. To find out which means are different, we would run a multiple-comparison
procedure. You could use multiple sets of two independent t tests to compare each pair of means, but
the likelihood of finding a statistically significant difference in at least one pair of means increases as the
number of comparisons increases, even when the means are equal. To account for the chance of this
error, a multiple-comparison test adjusts the observed significance level, making it more difficult to find a
statistically significant difference. The Bonferroni test, for example, divides the alpha level by the
number of comparisons being made. In other words, with an alpha level of 0.05 and ten comparisons
being made, 0.05/10 is equal to 0.005. So the p-value of each significance level must then be equal to
or less than 0.005 in order to be considered a significant difference.

Figure 10.6 shows the commands to run a Bonferroni test and the output. The first row in the Bonferroni
table compares the SAT score of students from families earning $60,000 to $99,000 with the scores of
students from families earning less than $60,000. Within the first cell, 35.4039 is the average SAT score
of children from families earning $60,000 to $99,000 minus the average SAT score of children from



families earning less than $60,000. The significance level is reported underneath at 0.003. With our new
alpha level of 0.005, we can report that this is a statistically significant difference since 0.003 is less than
0.005. Examining all of the cells in this table, each of the 10 comparisons show a statistically significant
difference.

Description

Figure 10.6 One-Way Analysis Of Variance Test With The Bonferroni Test

10.7 PRESENTING THE RESULTS
Presenting the results for a nontechnical audience

To present these results to a lay audience who may not be familiar with statistical tests, we could write
the following:

Our results indicate that there is a statistically significant difference in SAT scores among
children from families in five different income categories.

In the lowest category of income (less than $59,999), students earn, on average, 1,277 points
on their combined reading and math SAT scores. In the wealthiest category of income (more
than $200,000), students from these families earn 1,434 points on average. The results also
show, however, that only 9% of the variation in SAT scores can be explained by income
differences. It is therefore important to consider other factors that may affect SAT scores.

Presenting the results in a scholarly journal

In a peer-reviewed journal, we would include more information. These results could be explained as
follows:



A one-way ANOVA was used to compare the combined math and reading SAT scores of
students who come from families in five different income categories. The results indicate that
there is a statistically significant difference at the 0.05 significance level among the SAT scores;
F(4, 3173) = 78.69, p < 0.001. In particular, the scores rise as family income increases, with
students from the lowest income category earning 1,276.91 on average (SD = 225.2)
compared with 1,433.86 points earned on average (SD =143.3) among students from families
in the wealthiest income category. Although Bartlett’s test revealed unequal variances among
the five income groups, the large sample sizes make the results robust. Using eta-square to
examine the effect size, only 9% of the variation in SAT scores could be explained by income.

10.8 SUMMARY OF COMMANDS USED IN THIS CHAPTER
As described in Chapter 4, this last section of each chapter summarizes the hypothesis, test
procedures, and the Stata code used in the chapter (Tables 10.2 and 10.3). They are also summarized
in Appendices 1 and 2.



Chapter Title Null Hypothesis Test
Info
Known/Type
of Variables

Procedures/Interpretation



Chapter Title Null Hypothesis Test
Info
Known/Type
of Variables

Procedures/Interpretation

1. The Normal
Distribution

There is no difference
in SAT scores among
those students who
took a preparatory
course and those
who did not.

z score or
standard
score

Single
sample

Know
population
mean

Know
population
standard
deviation

1. Standard error of
mean = (σ/√n)

2. Standard score ((X
−µ)/Standard error of
mean)

3. Look up percentages
for standard score
using normal
distribution

When the null hypothesis is
true, the probability of
observing a z score greater
than +1.41 or less than
−1.41 is less than 0.16. Do
not reject the null
hypothesis.

8. Testing a
Hypothesis
About a
Single Mean

Students who use
ChatGPT to generate
and practice
problems earn 86 on
their homework
score.

One-sample
t test Single

sample

Know
population
mean

Don’t know
population
standard
deviation

1. Standard error of
mean = (s/√n)

2. Standard score ((X -
µ)/Standard error of
mean)

3. Look up area for t
statistic

When the null hypothesis is
true, the probability of
observing a F value greater
than 3.25 or less than
−3.25 is less than 0.0029.
Reject the null hypothesis.



Chapter Title Null Hypothesis Test
Info
Known/Type
of Variables

Procedures/Interpretation

9. Testing a
Hypothesis
About Two
Independent
Means

There is no difference
in the number of
mask-mandated days
among Democratic
and Republican
states.

Two
independent-
samples t
test

Two samples
Two
populations

1. Standard error of the
mean difference= 

√

s

2

1

n

1

+

s

2

2

n

2

2. Calculate t statistic = 
X

1

−X

2

√

s

2

1

n

1

+

s

2

2

n

2

3. Look up area for t
statistic

When the null hypothesis is
true, the probability of
observing a value greater
than 5.1 or less than −5.1
is less than 0.01. Reject
the null hypothesis.

 Variances of the two
populations are
equal.

Levene’s
test of
equality of
variances

 

1. Use F test from
output

When the null hypothesis is
true, the probability of
observing an F value at
least as large as 1.56 is
less than 0.22. Do not
reject the null hypothesis.

10. One-
Way
Analysis of
Variance

There is no difference
in SAT scores among
college students from
families with different
levels of income.

One-way
ANOVA

One
categorical
variable and
more than
two means

Calculate the F ratio by
running the ANOVA test

When the null hypothesis is
true, the probability of
observing an F ratio at
least as large as 78.69 is
less than 0.05. Reject the
null hypothesis.



Chapter Title Null Hypothesis Test
Info
Known/Type
of Variables

Procedures/Interpretation

Variances of the
groups are equal.

Bartlett’s test
for equal
variances

1. Use the Bartlett’s test
from the output.

When the null hypothesis is
true, the probability of
observing a chi-square at
least as large as 159.54 is
less than 0.05. Reject the
null hypothesis.

Function Code
Table table FamilyInc, stat(mean SAT) stat(sd SAT) stat(count

SAT) nformat(%4.0f)
One-way analysis of variance oneway SAT FamilyInc, tabulate
One-way analysis of variance with
Bonferroni test

oneway SAT FamilyInc, bonferroni

EXERCISES
1. Use the General Social Survey 2021 (GSS2021) data set to answer this question. You want to

examine whether the number of hours that individuals work per week (hrs1) varies by education
level (degree). To do this, you must first eliminate all part-time workers from the data set. This can
be done by running the commands keep if hrs1 > 31. When you have completed the assignment,
do not save the data set since this will permanently remove part-time workers!

a. Generate two tables. In the first table, show the overall average of hours worked per week
(hrs1) for all respondents in the sample who work full time. In a second table, show the
average hours worked (hrs1), the standard deviation for hours worked, and the count for hours
worked by education level (degree). Format the table so that there is one digit to the right of the
decimal point.

b. Use a one-way analysis of variance test to examine the number of hours worked per week by
degree level.

c. What is the null hypothesis?
d. What is the alternative hypothesis?
e. Write a paragraph that would explain your findings to a nontechnical audience.
f. Write a paragraph that would explain your findings in a scholarly journal.

2. You want to compare the average number of hours that teenagers play video games on weeknights
based on three age categories: (1) 10 to 12 years, (2) 13 to 15 years, and (3) 16 to 18 years. You
are given the following information on the mean, variance, and sample size of each group. The



overall average for all individuals combined is 2. Based on this information, calculate the F statistic.
Show all of your work (Table 10.4).

Age-Groups Average Hours of Gaming on a Weeknight Variance Sample Size
10–12 years old 1  4 22
13–15 years old 3 25 31
16–18 years old 2  9 52

3. Use the Liberal Arts Colleges – USNews data set to determine if there are differences in the
average SAT score among students in the top, middle, and bottom third of the colleges as ranked
by US News and World Report (thirdrank).

a. Generate a table that shows the average SAT score (sat_avg) by the ranking category of the
college (thirdrank). Format the table so that it uses commas and only whole numbers.

b. Run a one-way analysis of variance to determine if there is a statistically significant difference
in the average SAT scores across ranking categories.

c. What is the null hypothesis?
d. What is the alternative hypothesis?
e. What can you conclude from your results?

4. Socioeconomic mobility theories suggest that students from certain regions are more likely to go to
college, earn higher incomes, or move from a low-income category to a higher income category.
Use the School Survey on Crime and Safety from 2015 to 2016 (pu_ssocs16.dta) to explore this
issue by answering the following questions:

a. Generate a table that shows the average, standard deviation, and sample size for the
percentage of students who are likely to go to college (C0534) by location (FR_URBAN).
Format the table so that there are only whole numbers.

b. Run a one-way analysis of variance to determine if there is a statistically significant difference
in the percentage of students who are likely to go to college.

c. Use the Bonferroni test, and explain the results.
d. What can you conclude from your results?

5. You want to determine if the average SAT score (sat_avg) differs by type of university or region
(USNewsType). Use the “College Score Card April 2023 – USNews.dta” data set to explore this
issue.

a. Generate a table that shows the average, standard deviation, and sample size of the averages
SAT score (sat_avg) by type and region of college (USNewsType). Format the table so that
there are only whole numbers.

b. Run a one-way analysis of variance, including the Bonferroni test, to determine if there is a
statistically significant difference in the average SAT scores by college type and region.

c. Can you reject the null hypothesis that there is no difference in SAT scores?
d. According to the Bonferroni test, which pairs of means show a statistically significant

difference?

KEY TERMS



alternative hypothesis

analysis of variance (ANOVA)

Bartlett’s test

Bonferroni test

eta-square

p-value

Descriptions of Images and Figures
Back to Figure

The information panel is titled "The SAT and ACT are less important than you might think" published on
January 25, 2023, 8.24 am, EST. The content on the image is as follows.

“Whether on paper or computerized, standardized tests may be in decline.

College admission tests are becoming a thing of the past.

More than 80% of U.S. colleges and universities do not require applicants to take standardized tests –
like the SAT or the ACT. That proportion of institutions with test-optional policies has more than doubled
since the spring of 2020.

And for the fall of 2023, some 85 institutions won’t even consider standardized test scores when
reviewing applications. That includes the entire University of California system.

Currently, only 4% of colleges that use the Common Application system require a standardized test such
as the SAT or the ACT for admission.”

On the left, “Email,” “Twitter,” “Facebook,” “Linkedin,” are “Print” are given.

Back to Figure

The graph has three bell curves arranged horizontally at a distance. The distance between each curve
is marked as “Between-Group variance” and the length of each curve is marked as “Within-Group
Variance.” The block above the graph reads “Between-group variance is large relative to the within-
group variance, so F statistic will be larger & > critical value, therefore statistically significant. Conclusion
– At least one of group means is significantly different from other group means.”

Back to Figure

The graph has three bell curves overlapping each other. The distance between curves is marked as
“Between-Group variance” and the length of each curve is marked as “Within-Group Variance.” The
block above the graph reads “Within-group variance is larger, and the between-group variance smaller,
so F will be smaller (reflecting the likelihood of no significant differences between these 3 sample
means).”

Back to Figure

The content of the image is given in the following table.

.table FamilyInc, stat(mean SAT) stat(sd SAT) stat(n SAT) format (%5.0fc)



 Mean Standard deviation Number of nonmissing values
FamilyInc    
<59K 1,277 225 779
60-99K 1,312 189 641
100-149K 1,359 179 666
150-199K 1,369 176 296
>200K 1,434 143 796
Total 1,349 194 3,178

Back to Figure

The first table is titled “Oneway SAT FamilyInc, tabulate.” The content of the table is given in the
following table.

 Summary of SAT   
FamilyInc Mean Std. Dev. Freq.
<59K 1276.905 225.16055 779
60-99K 1312.3089 188.99067 641
100-149K 1359.2057 179.30577 666
150-199K 1368.9189 176.09372 296
>200K 1433.8568 143.39574 796
Total 1349.1756 194.35444 3,178

The second table is titled “Analysis of Variance.” The content of the table is given in the following table.

Source SS df MS F Prob > F
Between groups 10830385.7 4 2707596.42 78.69 0.0000
Within groups 109176496 3173 34407.9724   
Total 120006882 3177 37773.6487   

“78.69” and “0.0000” are highlighted and marked as “We reject the null hypothesis that there is no
difference in SAT scores.”

The text at the bottom reads “Bartlett’s test for equal variances: chi2 (4) = 159.5359 Prob>chi2 = 0.000.”
and is marked as “We reject the null hypothesis of equal variances.”

Back to Figure

The image is titled “Oneway SAT FamilyInc, Bonferroni.” The first table is titled “Analysis of Variance.”
The content of the table is given in the following table.

Source SS df MS F Prob > F
Between groups 10830385.7 4 2707596.42 78.69 0.0000
Within groups 109176496 3173 34407.9724   
Total 120006882 3177 37773.6487   

The text below reads “Bartlett’s test for equal variances: chi2 (4) = 159.5359 Prob>chi2 = 0.000.”

The second table is titled “Comparison of SAT by FamilyInc (Bonferroni).” The content of the table is
given in the following table.



Row Mean-Col mean <599k 60-99k 100-149k 150-199k
60-99k 35.4039    
 0.003    
100-149k 82.3007 46.8968   
 0.000 0.000   
150-199k 92.0139 56.61 9.71321  
 0.000 0.000 1.000  
>200k 156.952 121.952 74.6511 64.9379
 0.000 0.000 0.000 0.000



11 COMPARING CATEGORICAL VARIABLES – THE
CHI-SQUARED TEST AND PROPORTIONS



CHAPTER PREVIEW

Steps Example
Research
question

Do education levels differ between men and women who use online dating
sites?

Null
hypothesis

There is no difference in the education levels of men and women who use
online dating sites.

Test Chi-squared test
Types of
variables Two categorical variables with two or more categories in each:

Sex—male or female

Education level—high school, college, or graduate school

When to use Comparing percentages
Assumptions

1. Independent observations
2. Minimum expected cell frequency should be 5 or greater in 80% of the

cells.

Stata code:
generic

tab categoricalvar1 categoricalvar2, chi2 row (or column if the
independent variable is in the column)

Stata code:
example

tab sSex edu2, chi2 row nofre



11.1 INTRODUCTION
According to an article in June of 2022, 1 in 5 Americans were using an online dating app at the time
and another 27% were formerly on a dating site (See Figure 11.1). Of those using a dating site at the
time, 19% were talking to 11 or more people at once, and LGBTQ users were twice as likely to use a
dating app. Over 13% of online dating users got engaged or married, and 24% claim they never had
more than one or two dates. In terms of being matched, a much larger percentage of women (72%)
think that it’s essential to list the type of relationship you are looking for, compared to 53% of men.
Women also report being more interested in their potential mate’s occupation (27%) compared to 8% of
men (Hadji-Vasilev, 2022).

Description

Figure 11.1 Article

The rise in popularity of dating sites has also led to an increase in the number of dating sites. At the end
of 2022, Tinder had the largest market share in the U.S. (30%) compared to Bumble (21%), Hinge
(14%), and Plenty of Fish (13%). Worldwide, however, Badoo had the largest market share, with over
400 million users at the end of 2022.



In this chapter, we will learn how to test for a statistically significant difference in percentages using
Pearson’s chi-squared test. We use this test when there are two categorical variables with at least two
categories in each variable. For example, based on the statistics just mentioned, we could test whether
there was a statistically significant difference in the percentage men and women who report an interest
in the occupation of a potential mate or who think that it is essential to list the type of relationship they
are looking for. Since we do not have access to current worldwide trends, we will instead use the data
from one particular dating app, OkCupid, that recorded the profile and general statistics for close to
60,000 users in the San Francisco area. In particular, we will examine whether the same percentage of
men and women have completed high school, college, or graduate school among users of the dating
app. In other words, if 60% of the overall population that uses the dating app has a college education,
do 60% of women and 60% of men who use the dating app have a college education? Before turning to
the the OkCupid data set to examine education levels, however, we provide examples of how the chi-
squared test can be used in different fields.

11.2 WHEN TO USE THE CHI-SQUARED TEST
Table 11.1 shows examples from different fields where the chi-squared test can be used. As mentioned
previously, there must be two categorical variables with at least two categories in each.

Field Research Question Null Hypothesis Categorical Variables



Field Research Question Null Hypothesis Categorical Variables
Criminal
justice

Are men and women
equally likely to
support
decriminalization of
marijuana?

Men and women are
equally likely to support
decriminalization of
marijuana.

1. Sex
2. View on decriminalizing

marijuana (yes or no)

Economics Is income more
equally distributed in
developed countries?

There is no difference in
income distribution between
developed and developing
countries.

1. Level of development
(developed or developing)

2. Three levels of classification
of equality based on ranges
of the Gini coefficient (high
equality, medium equality,
and low equality)

Political
science

Are men and women
equally likely to vote
for a Republican
candidate for
president?

Men and women are
equally likely to vote for a
Republican candidate for
president.

1. Gender
2. Party they will vote for

(Republican, Democrat,
Green, independent)

Psychology Does the ability to
delay gratification
among children lead
to lower obesity?

There is no difference in
obesity levels among those
who were able to delay
gratification and those who
were not.

1. Ability to delay gratification
(yes or no)

2. Obese at a later age (yes or
no)

Public
health

Is opioid abuse higher
among men?

There is no difference in
opioid abuse among men
and women.

1. Opioid abuse (yes or no)
2. Gender

Sociology Do men and women
have the same
reaction when a
stranger invades their
personal space?

There is no difference in the
way men and women react
when a stranger invades
their personal space.

1. Gender
2. Reaction (negative, positive,

or no reaction)

11.3 CALCULATING THE CHI-SQUARE STATISTIC
In previous chapters, we examined differences in means and used the normal or the t distribution. When
examining counts or percentages, we need to calculate a chi-square statistic and compare it with the
chi-square distribution. Unlike the normal or t distributions that are bell shaped, the chi-square
distribution is skewed to the right, as illustrated in Figure 11.2. Because the chi-square distribution is
based on one or more squared variables, it can never be negative.



Description

Figure 11.2 Chi-Square Distribution

We use the chi-square statistic to determine the probability of observing our results when the null
hypothesis is true. The formula for the chi-square statistic is illustrated in Equation 11.1.

(11.1)

χ

2

=∑

n

i=1

(O

i

−E

i

)

2

E

i

Where

Oi = the number of observations of type i

Ei = the expected number of type i

n = the number of cells in the table

This equation can be more easily understood with an example. Figure 11.3 uses data from the OkCupid
data set to show the observed number, the expected number, and the percentage of men and women
who have a high school, college, or graduate degree. In this case, sex is our independent variable, and
the education level is the dependent variable. In other words, someone’s education level may be
influenced or depend on their sex.



Description

Figure 11.3 Cross Tabulation Of Sex And Education Of Okcupid Users With With
Observed And Expected Counts

The first cell shows that 1,362 women have a high school degree or less out of 21,243 women. This is
the observed count. In the general population, or the “total” row, we see that 4,652 people, or 9.01%,
have a high school degree or less. Our null hypothesis would suggest that 9.01% of men and 9.01% of
women would have a high school degree or less. The expected count in the first cell is therefore 9.01%
× 21,243, or 1,913.0. For men with a high school degree or less, the expected count is 9.01% × 30,391,
or 2,738.1. After calculating the expected count for each cell, we can use Equation 11.1 to generate the
chi-square statistic:

χ

2

=

(1,392 − 1,914)

2

1,914

+

(12,981 − 13,101)

2

13,101

+

(6,900 − 6,228)

2

6,228

+

(3,290 − 2738)

2

2738

+

(18,862 − 18,742)

2

18,742

+

(8,239 − 8,911)

2

8,911

= 379



To determine if this is usual, we would compare this with the chi-square distribution. As with the t
distribution, you would need to use degrees of freedom. For the chi-square statistic, the degrees of
freedom are based on the number of rows and columns rather than the number of cases. In this case,
the degrees of freedom are calculated as follows:

Degrees of freedom = (Number of rows in the table − 1) × (Number of columns − 1)

There are many online calculators that can determine the probability of observing a chi-square statistic
at least as large as the one you observed when the null hypothesis is true. One example is the chi-
square calculator by DI Management1 (www.di-mgt.com.au/chisquare-calculator.html); it will calculate
the p value and show you the graph.

When plugging in 379 for the chi-square value and 2 degrees of freedom, the p value is 0.00000.
Fortunately, however, we will not need to calculate the chi-square statistic using the observed and
expected counts since Stata will do this for us. This is illustrated in the next section.

11.4 CONDUCTING A CHI-SQUARED TEST
As described in the introduction, online dating has become extremely popular in the United States and
around the world. Using the OkCupid data set of close to 60,000 users in the San Francisco area from
2015, we could examine many aspects of individuals who use online dating sites. In this section, we will
use the same example from the previous section to assess whether education levels vary between men
and women among online dating site users. We can then compare the results calculated previously with
the same test generated by Stata.

Research question

Do education levels differ between men and women on online dating sites?

Null hypothesis

There is no difference in the education levels between men and women on online dating sites.

Variables

Categorical variable—education level (edu2)

Categorical variable—gender identity (sex)

Assumptions

1. Independence of observations: There should be only one observation for each participant.
2. Minimum expected cell frequency: There should be at least five observations per cell in the table in

at least 80% of the cells.

Procedures using code

Using a do-file, we would run these commands:



tab sex edu2, nofreq row chi2 V

Procedures using menus

Using menus in Stata, we would click on the following sequence that would bring us to a dialog
box where you would select sex and edu2 in the drop-down menus.

Statistics → Summaries, tables, and tests → Frequency tables → Two-way table with measures of
association

11.5 INTERPRETING THE OUTPUT
Figure 11.4 shows the output for the chi-squared test. As illustrated, the chi-square statistic is close to
the number that we calculated in Section 11.3. There is only a small difference due to rounding. Our
results indicate that when the null hypothesis is true (There is no difference in the education levels
between men and women on online dating sites), the probability of observing a chi-square statistic at
least as large as 395 is less than 0.05. We therefore reject the null hypothesis and can state that there is
a statistically significant difference in the education levels of men and women on the online dating app,
OkCupid.

Description

Figure 11.4 Stata Output For The Perason Chi-Squared Test

As we saw in previous chapters, we may want to examine effect size or the magnitude of the difference
in education levels between men and women. This is particularly important because larger samples will
often indicate a significant difference even when the difference is quite small.

There are several measures to examine the effect size, but Cramér’s V is the most commonly used.2 It
is calculated as follows:



Cram ér'sV =

√

χ

2

n[min(k− 1, r− 1)]

(11. 2)

where

n = number of observations

k = number of columns

r = number of rows

Cramér’s V generates a correlation coefficient that can range from 0 to 1 with 0 representing no
association and +1 representing perfect correlation. In other words, a score of +1 would mean that sex
can fully explain the difference in education levels among OkCupid users. The dependent variable,
education levels, is dependent on sex.

For a 2 × 32 table, as in this example, a Cramér’s V <0.07 is considered small, <0.21 is medium, and
<0.35 is a large difference between the two proportions. Based on our example, the V of 0.0875
indicates that there is a small correlation between the two variables. In other words, sex is a significant
factor in determining education levels among dating app users, but it has only a small effect3. Table 11.2
shows how to interpret the effect size based on degrees of freedom from 1 through 5.

Degrees of Freedom Small Medium Large
1 .2 .3 .5
2 .07 .21 .35
3 .06 .17 .29
4 .05 .15 .25
5 .04 .13 .22

11.6 PRESENTING THE RESULTS
Presenting the results for a nontechnical audience

To present these results to a lay audience who may not be familiar with statistical tests, we could write
the following:



Our results indicate that there is a statistically significant difference in the percentage of men
and women who have a high school, college, or graduate-level education. A larger percentage
of women have graduate-level education (32%) when compared with men (27%). A similar
percentage have a college-level education, and a higher percentage men (11%) have a high
school education compared to women (6%).

Presenting the results in a scholarly journal

In a peer-reviewed journal, we would include more information. These results could be explained as
follows:

A chi-squared test for independence indicated that there is a statistically significant difference
in the percentage of men and women who have a high school, college, and graduate school
level of education: χ2(2, n = 51,634) = 395, p = 0.00, Cramér’s V = 0.09. Thirty-two percent of
women have a graduate-level education compared to 27% of men. At the college level, 61% of
women have a college degree compared to 62% of men. In terms of high school, 11% of men
have a high school degree compared to 6% of women.

11.7 COMPARING PROPORTIONS OR BINARY CATEGORICAL
VARIABLES
As described previously, the chi-squared test is used to examine the association or independence
between two categorical variables. In the prior example, we examined the two categorical variables of
sex (male or female) and education levels (high school, college, or graduate school). The data set was
based on responses among people who use OkCupid.

We can also test for an association between categorical variables when both variables are binary (for
example, a success or a failure outcome or a yes/no answer). In this case, we would be comparing the
proportions of two independent groups.

Let’s suppose that instead of examining the educational characteristics of men and women who use
dating apps, we want to compare the proportion of men and women who use dating apps. The null
hypothesis would be that there is no difference in the proportion of men and women among online
dating site users. Let’s assume that 25% men in a sample of 400 report that they use dating apps and
18% of women in a sample of 500 report the same. We would begin by calculating the standard error as
follows:

SE

p1−p2

=

√

π(1− π)

n1

+

π(1− π)

n2

=

√

0.25(1− 0.25)

400

+

0.18(1− 0.018)

500

= 0.02

We would then calculate a z score as follows:



z =

(p1− p2)

SE

p1−p2

=

0.25− 0.18

0.02

=

0.07

0.02

= 3.5

Using a z score calculator or the table in Appendix 5 and an alpha level of 0.05, we see that the
probability of observing a z score when the null hypothesis is true is less than or equal to 0.00047 for a
two-tailed test. We therefore reject the null hypothesis that the two proportions are equal. Assuming that
we had the full data set related to this question, we could also run this test using the Stata commands
prtest date, by(sex) level(95) in which “date” is the variable that asks whether someone uses dating
apps (yes/no) and sex is the variable name for sex of the respondent.

11.8 SUMMARY OF COMMANDS USED IN THIS CHAPTER
As described in Chapter 4, this last section of each chapter summarizes all of the Stata code used in the
chapter. In addition, all Stata code used throughout the book is summarized in Appendix 1. We also
show the hypothesis, test, and procedures (Tables 11.3 and 11.4).



Chapter Title Null Hypothesis Test
Info
Known/Type
of Variables

Procedures/InterpretationChapter Title Null Hypothesis Test
Info
Known/Type
of Variables

Procedures/Interpretation

7. The
Normal
Distribution

There is no
difference in SAT
scores among those
students who took a
preparatory course
and those who did
not.

z score or
standard
score

Single
sample

Know
population
mean

Know
population
standard
deviation

1. Standard error of
mean = (σ/√n)

2. Standard score ((X−
μ)/Standard error of
mean)

3. Look up percentages
for standard score
using normal
distribution

When the null hypothesis is
true, the probability of
observing a z score greater
than +1.41 or less than
−1.41 is less than 0.16. Do
not reject the null
hypothesis.

8. Testing a
Hypothesis
About a
Single Mean

Students who use
ChatGPT to generate
and practice
problems earn 86 on
their homework
score.

One-sample
t test Single

sample

Know
population
mean

Don’t know
population
standard
deviation

1. Standard error of
mean = (s/√n)

2. Standard score ((X−
μ)/Standard error of
mean)

3. Look up area for t
statistic

When the null hypothesis is
true, the probability of
observing a F value greater
than 3.25 or less than
−3.25 is less than 0.0029.
Reject the null hypothesis.

¯

¯



Chapter Title Null Hypothesis Test
Info
Known/Type
of Variables

Procedures/Interpretation

9. Testing a
Hypothesis
About Two
Independent
Means

There is no
difference in the
number of mask-
mandated days
among Democratic
and Republican
states.

Two
independent-
samples t
test

Two samples

Two
populations

1. Standard error of the
mean difference= 

√

s

2

1

n

1

+

s

2

2

n

2

2. Calculate t statistic = 
X

1

−X

2

√

s

2

1

n

1

+

s

2

2

n

2

3. Look up area for t
statistic

When the null hypothesis is
true, the probability of
observing a value greater
than 5.1 or less than −5.1
is less than 0.01. Reject
the null hypothesis.

 Variances of the two
populations are
equal.

Levene’s
test of
equality of
variances

 

1. Use F test from
output

When the null hypothesis is
true, the probability of
observing an F value at
least as large as 1.56 is
less than 0.22. Do not
reject the null hypothesis.

10. One-
way
Analysis of
Variance

There is no
difference in SAT
scores among
college students from
families with different
levels of income.

One-way
ANOVA

One
categorical
variable and
more than
two means

Calculate the F ratio by
running the ANOVA test

When the null hypothesis is
true, the probability of
observing an F ratio at
least as large as 78.69 is
less than 0.05. Reject the
null hypothesis.

¯̄



Chapter Title Null Hypothesis Test
Info
Known/Type
of Variables

Procedures/Interpretation

Variances of the
groups are equal.

Bartlett’s test
for equal
variances 1. Use the Bartlett’s

test from the output

When the null hypothesis is
true, the probability of
observing a chi-square at
least as large as 159.54 is
less than 0.05. Reject the
null hypothesis.

11. Cross
Tabulation
and the Chi-
Square
Statistic

There is no
difference in the
education level of
men and women
among users of
online dating sites.

Chi-square
statistic Two

categorical
variables

Comparing
percentages,
not means.

Calculate the chi-square
statistic by running the
Pearson chi-squared test

When the null hypothesis is
true, the probability of
observing a chi-square
statistic at least as large as
395 is less than 0.05.
Reject the null hypothesis.

Function Code
Chi-square statistic with Cramer’s V tab sex edu2, nofreq row chi2 V
Difference in proportions of two independent samples prtest date, by(sex) level(95)

EXERCISES
1. Misuse of prescription pain relievers has become a national crisis in the United States. Use

the National Survey on Drug Use and Health data set to examine differences in prescription
pain reliever abuse between men and women in the United States.

a. Generate a table that compares the percentage of men and women (irsex) who have
ever misused pain relievers (pnrnmflag). Be sure to use row or column percentages,
depending on which one is appropriate. Also include Cramér’s V.

b. What is the null hypothesis?
c. Based on your results, would you reject the null hypothesis?
d. Using the appropriate statistics from your results, explain your answer to Part C.



e. Interpret Cramér’s V. What does it mean in the context of this example?
f. Explain your results in a few sentences to a nontechnical audience.

g. Explain your results in a few sentences for a scholarly journal.
2. Use the same data set and research question from Question 1 to generate a new table that

shows the observed and expected frequencies for each cell.
3. Based on your table from question 2, write out the full equation for the chi-square statistic,

and calculate it using a calculator. Round each expected frequency to the nearest whole
number in your equation.

4. Use Stata and the GSS2021.dta file to examine whether people with different levels of
education (degree) believe in life after death (postlifev).

a. What is the null hypothesis?
b. Explain why you would or would not reject the null hypothesis using output from your

analysis.
c. Calculate the effect size, and interpret the number.
d. In a few sentences, explain your results for a nontechnical audience.
e. In a few sentences, explain your results for a scholarly journal.

5. Use the OkCupid data set to compare the percentage of men and women (sex) who like or
dislike cats (likescats).

a. What is the null hypothesis?
b. Explain why you would or would not reject the null hypothesis using output from your

analysis.
c. Calculate the effect size and interpret the number.
d. In a few sentences, explain your results for a nontechnical audience.
e. In a few sentences, explain your results for a scholarly journal.

KEY TERMS

Cramér’s V

independence of observations

null hypothesis:

research question

Pearson’s chi-squared test

Descriptions of Images and Figures
Back to Figure

The article is titled “25 Online Dating Statistics & Trends in 2023.” The content in the image is given as
follows.

“Tinder, Hinge, Match.com – the online dating industry is booming, with millions of users making dating
platforms their preferred get-to-know-me method. We’ve put together 25 online dating statistics that
show you what’s going on in the industry.

By Andrej Hadji-Vasilev (Writer)

— Last Updated: 16 Marʼ23. Facts checked by Jasna Mishevska.



Online dating has rapidly gained popularity in recent years, and it’s easy to see why. Platforms like
Tinder, Hinge, Match.com and others have made it incredibly easy to create a profile and meet single
people outside your circles. To explore the online dating industry, we’ve put together a list of our favorite
online dating statistics.

Key Takeaways:

Online dating platforms aren’t going away anytime soon — their popularity is on the rise, with new
users registering every day.

The majority of online daters claim that it’s “somewhat easy” to find compatible partners.

Dating app revenue was $5.61 billion in 2021, even though Tinder — the most popular app — has a
free version.

Tinder is the go-to dating platform nowadays, but it has strong competition in rivals like Bumble and
Hinge.”

Back to Figure

The horizontal axis represents the “Value of Chi-square (5)” ranging from 0 to 30 in increments of 10.
The vertical axis represents “PDF Chi-square (5)” ranging from 0 to 0.15 in increments of 0.05. The
curve starts at (0, 0), increases to reach approximately 0.155, then decreases to reach (20, 0), and then
stays constant. The area between the curve and the vertical line at 11 is shaded and marked as “Prob
(Chi-square (5) > 11)=.0514.”

Back to Figure

The table is titled “.tab sex edu2, row exp.” The text below reads

“Key:

Frequency

Expected Frequency

Row Frequency.”

The content of the table is given in the following table.

Sex Education
HS College Graduate Total

Female 1,362 12,981 6,900 21,243
1,913.9 13,100.7 6,228.4 21,243.0
6.41 61.11 32.48 100.00

Male 3,290 18,862 8,239 30,391
2,738.1 18,742.3 8,910.6 30,391.0
10.83 62.06 27.11 100.00

Total 4,652 31,843 15,139 51,634
4,652.0 31,843.0 15,139.0 51,634.0
9.01 61.67 29.32 100.00



Back to Figure

The table is titled “.tab sex edu2, nofre row chi2 V.” The content of the table is given in the following
table.

Sex Education
HS College Graduate Total

Female 6.41 61.11 32.48 100.00
Male 10.83 62.06 27.11 100.00
Total 9.01 61.67 29.32 100.00

The text below reads “Pearson chi2(2)=395.2835; Pr=0.0000; Cramer’s V=0.0875.”
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12 LINEAR REGRESSION ANALYSIS



CHAPTER PREVIEW

Steps Examples
Research
question

What factors influence the value of new and used cars?

Null
hypothesis

Each factor has no effect on its value.

Test t test of the each coefficient in multiple regression analysis
Types of
variables

One continuous dependent variable (price) and multiple independent
variables (including mileage)

When to use To examine the relationship between one continuous dependent variable
and one or more independent variables

Assumptions Independent variables are measured without error. All relevant variables are
included. The functional form is correct. The variance of the residuals is
constant. The error terms are not correlated with each other. The error term
is not correlated with any independent variables.

Additional
tests needed

Tests for normality, omitted variables, multicollinearity, and heteroscedasticity
(see Chapter 13)

Stata code:
generic regress depvar indepvars

Where depvar is the dependent variable and indepvars is a list of one or
more independent variables

Stata code:
example

regress price year mileage



12.1 INTRODUCTION
We are often interested in exploring the effect of different factors on a variable of interest. For example,
what factors influence the market price of new and used cars? Experts say that age, mileage, and
condition are the main determinants of value, but other factors play a role, such as options, location, and
color (D’Allegro, 2021). In this chapter, we will learn a statistical method called regression analysis,
which is used to study the effect of one or more independent variables on one dependent variable. The
dependent variable is an outcome variable that we wish to explain using a number of other variables.
The independent variables are the variables used to “explain” the variation in the dependent variable;
they are also called explanatory variables. Regression analysis uses data on the variables of interest to
generate an equation that best describes the relationship between the dependent variable and the
independent variables. Using the example from above, we can use regression analysis to generate an
equation that predicts the price of cars as a function of mileage, year, and other factors.

This chapter emphasizes the use of regression analysis and the interpretation of the results. It does not
look “under the hood” to explain the calculation of coefficients, standard errors, and test statistics. For
additional information on regression analysis, the reader may consult Bailey (2017), Greene (2018), or
Woolridge (2016), which provide much more in-depth treatments of regression analysis.

12.2 WHEN TO USE REGRESSION ANALYSIS
Regression analysis is widely used in economics, sociology, psychology, business studies, and other
fields. Table 12.1 shows examples from different fields where multiple regression is used. In each case,
there is a research question, a null hypothesis, a continuous dependent variable, and one or more
independent variables. Each of these can be tested using multiple regression analysis.



Field Research Question Null Hypothesis
Continuous
Dependent
Variable

Independent
Variables

Criminal
Justice

Do youth sports
programs predict a
lower arrest rate
among teenagers?

Youth sports
programs are not
associated with
teenage arrest rate.

Number of
arrests of
teenagers per
100,000
teenagers in
each county

Size of youth
sports program
and other county
characteristics

Economics How does meat
demand vary with
income?

Income has no effect
on meat demand.

Household meat
consumption
from a survey

Income and other
household
characteristics
from the survey

Political
Science

How does county
average education
level predict county-
level support for a
political party?

Education level does
not predict support for
a political party.

Share of a
county
supporting a
political party in a
national race

Average education
and other voter
characteristics in
each county



Field Research Question Null Hypothesis
Continuous
Dependent
Variable

Independent
Variables

Psychology How are family history
characteristics
associated with
psychological well-
being?

Family history
characteristics are not
associated with
psychological well-
being.

Indicator of
psychological
well-being from a
survey

Family history
characteristics
from the survey

Public
Health

Is the incidence of
COVID-19 related to
the percentage of the
population
vaccinated?

The share of people
vaccinated in a county
is not related to the
prevalence of COVID-
19.

Share of people
who contract
COVID-19 in a
given year in
each county

Share of people
who have received
the vaccine and
other health
factors

Sociology Is the number of
children a couple has
affected by the
parents’ education?

The parents’
education has no
effect on the number
of children a couple
has.

Number of
children a couple
has according to
a survey

Education of the
father and
education of the
mother according
to the survey

The chapter begins with a description of correlation—a simple descriptive tool for measuring the
strength of the relationship between two variables. Next, we consider simple linear regression, with a
continuous dependent variable and one independent variable. Last, multiple linear regression is
described, which has a continuous dependent variable and multiple independent variables. Chapter 13
describes diagnostic tools for regression analysis, including how to incorporate nonlinear relationships.
Chapter 14 considers the case of regression analysis when the dependent variable is binary, rather than
continuous. And Chapter 15 provides a brief overview of several advanced topics in regression analysis.

12.3 CORRELATION
Suppose we are interested in examining the relationship between two continuous variables, such as the
price and mileage of a sample of cars. We can start by exploring the data visually with a scatterplot of
the two variables. A scatterplot can tell us at a glance whether the two variables are positively related or
negatively related. If the scatterplot shows an upward sloping pattern, the two variables are positively
correlated, meaning that high values of one variable are associated with high values of the other. For
example, daily temperature and ice cream sales are likely to be positively correlated. If the scatterplot
shows a downward-sloping pattern, the variables are negatively correlated, meaning that high values of
one variable are associated with low values of the other. For example, the number of sunny days in a
month and umbrella sales are probably negatively correlated.

Scatterplots also tell us in a general sense how closely related the two variables are. The closer the
points are to the central trend, the stronger the relationship between the two variables. Finally, the graph
can let us know whether the relationship between the two variables is linear (following a straight line) or
nonlinear (curved).

We have assembled a database of information on 971 new and used cars that were for sale within 20
miles of Burlington, Vermont, in mid-2023, drawing the data from the website Cars.com. For each car,
we recorded information on the price, mileage, model year, fuel type, and whether it was new or used.
The data are available in the file cars4sale.dta. After opening the file, we can create a scatterplot of
price and mileage using the menu system or using commands. With the menu, you can use the
following sequence: Graphics → Twoway graph (scatter, line, etc.) → Create → Basic plots → Scatter,
then select “price” as the y variable and “mileage” as the x variable. Alternatively, you can use the
following command, either in the command line or in a do-file:



twoway (scatter price mileage)

The command twoway means that we want to generate a graph with two variables, and scatter
indicates the type of graph. The first variable is plotted on the vertical axis and the second on the
horizontal axis.

The output in Figure 12.1 shows that the prices range up to $100,000 and the mileage up to 200,000
miles, but most of the cars have a price between $10,000 and $40,000 and have less than 100,000
miles on the odometer. As expected, price and mileage are negatively correlated, meaning that cars
with high mileage tend to have low prices, and vice versa. The graph also indicates many cars are
clumped in a line at zero mileage, reflecting the fact that new cars are included in the sample.

Description

Figure 12.1 Scatter Plot of Price and Mileage

How can we measure the strength of the relationship between two continuous variables? One of the
most common measures is the Pearson correlation coefficient, or r. The correlation coefficient can be
calculated using the following equation:1

(12.1)

Correlation coefficient = r =

∑

n

i=1

[(x

i

− x)(y

i

− y)]
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− x)

2

∑
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(y

i

− y)

2

where

n is the number of observations of x and y



xi = x1, x2,…xn are the values of x

yi = y1, y2,… yn are the values of y

x is the mean of x

y is the mean of y

The value of r varies between −1 and 1, where −1 means a perfect negative correlation, 0 means no
correlation, and 1 means a perfect positive correlation. When two variables are perfectly correlated,
every observation lies on a straight line if graphed on a scatterplot. When two variables have a very low
correlation coefficient, the scatterplot looks like a random collection of dots with no pattern.

To calculate the Pearson correlation coefficient for price and mileage in Stata, we can use the menu
system as follows: Statistics → Summaries, tables, and tests → Summary and descriptive statistics →
Pairwise correlations of variables, then select the variables price and mileage from the drop-down menu.
Alternatively, we can use this command:

pwcorr mileage price, sig

It will calculate the correlation coefficient for these two variables. Adding the sig option will give the
statistical significance of the correlation.

The results, shown in Figure 12.2, reveal that the correlation coefficient is −0.6019. The negative
number indicates a negative correlation between price and mileage, meaning that as mileage increases,
price declines. The magnitude suggests a relatively strong correlation. The number below the correlation
coefficient, 0.0000, indicates the p-value of the correlation—that is, the probability of finding a correlation
coefficient this large (or larger) if there were, in fact, no correlation between the two variables. The low
value of p indicates that the probability of this occurring “by chance” is very small. The two numbers
along the diagonal are 1.0 because they represent the correlation coefficient of each variable with itself.

Description

Figure 12.2 Pearson Correlation Coefficient

The pwcorr command can be used to calculate all the correlation coefficients for each pair of variables
in a list. For example, if we list five variables, Stata will display a 5 × 5 table of correlation coefficients.



A closely related measure of correlation is the coefficient of determination, more commonly known as
R2. When measuring the association between two variables, R2 can be calculated easily as the square
of the Pearson correlation coefficient:

(12.2)

Coefficient   of   determination   = R

2

= r

2

R2 varies between 0 and 1. If R2 = 0, the two variables are completely uncorrelated, and if R2 = 1, they
are perfectly correlated, either positively or negatively. One convenient feature of R2 is that, under some
circumstances, it represents the share of the variance in y that can be explained by the x variable.

Figures 12.3 and 12.4 provide some examples of scatterplots to give an intuitive sense of what different
values of R2 look like.

Description

Figure 12.3 Scatterplots with Different Levels of Positive Correlation

Description

Figure 12.4 Scatterplots with Different Levels of Negative Correlation

Correlation analysis has a number of limitations:

It does not tell us anything about the mathematical relationship between the two variables, such as
the slope of the line or where it crosses the vertical axis.

It only considers the relationship between the two variables.

It assumes a linear relationship between the two variables.



It does not imply or confirm any causal relationship between the two variables.

As we will see in the next section, regression analysis gives an equation that describes the relationship
among various variables, allows both linear and nonlinear relationships, and, subject to some
assumptions, can identify causal relationships.

12.4 SIMPLE REGRESSION ANALYSIS
As mentioned earlier, regression analysis describes the relationship between a dependent variable and
one or more independent variables. The distinction between dependent and independent variables is
based on the assumption that the independent variables are exogenous, meaning that they are not
affected by the dependent variable, nor are there any variables outside that model that affect both the
dependent variable and the independent variables. If this assumption holds, then any relationship
between y and x can be considered causal, meaning that the model describes how the independent
variables affect the dependent variable. If these assumptions do not hold, then one or more of the
independent variables are said to be endogenous. In this case, we cannot infer causality, but the
regression analysis might still be useful as a descriptive tool. In this case, it would only describe the
changes in y that are associated with changes in x. Chapter 13 describes in more detail the
consequences of regression models that violate this or other assumptions behind regression analysis.

We start with the simple case of a linear relationship between one dependent variable and a single
independent variable. Later in this chapter, we describe regression analysis with multiple independent
variables. And in later chapters, we show how regression analysis can be used to describe nonlinear
relationships.

The relationship between a dependent variable and one independent variable in a linear relationship
can be described with the following equation2:

(12.3)

y = β

0

+ β

1

x+ ε

where

y is the dependent variable

x is the independent variable

β0 is the constant or y intercept

β1 is the coefficient on x, which is the slope of the regression line

ε is the error term

The error term, ε, reflects the fact that the relationship between y and x is not exact, but rather is subject
to some error. Note that β0 and β1 are parameters that cannot be directly observed; we can only



estimate them using the values of y and x. Likewise, the error term, ε, cannot be directly observed.

The predicted value of y, written as, is defined as follows:

(12.4)

Predicted value of y = ŷ =

ˆ

β

0

+

ˆ

β

1

x

where

ˆ

β

0

 is the estimated value of the true parameter β0, and

ˆ

β

1

 is the estimated value of the true parameter β1

As you can see, the “hat” indicates an estimate of a population parameter based on sample data.

The residual is the difference between the actual value and the predicted value:

(12.5)

Residual = y−

ˆ

y = e

It is important not to confuse ε and e: ε is the unobserved error term in the “true” relationship between y
and x, while e is the observed difference between y and its predicted value, ŷ, the latter based on the
estimated relationship between y and x3. We use the distribution of the (observed) residuals to infer the
distribution of the (unobserved) error term.

The relationships among these concepts is shown in a simplified example in Figure 12.5. The 10 dots
represent the observations of x and y, while the line reflects the predicted values of y (ˆy) as a function of
x. For each of the 10 observations, the residual (e) is the vertical distance between the observation (y)
and the line representing the predicted values (ŷ), where the distance is considered negative when y is
less than ŷ.



Description

Figure 12.5 Regression Concepts Illustrated on Hypothetical Data

Now we can ask this question: What do we mean when we say that regression analysis identifies the
equation that “best describes” the relationship? In this case, regression analysis finds the values of ˆβ

0

and ˆβ
1

 that minimize the sum of squared residuals (Σe2) across all observations. For this reason, this
type of regression analysis is also called ordinary least squares (OLS) regression.

How do we obtain the values of ˆβ
0

 and ˆβ
1

 that best describe the data—that is, the values that minimize
the sum of squared residuals? The calculation of the estimated coefficients and related statistics uses
matrix algebra and is beyond the scope of this book, but interested readers will find more information in
Woolridge (2016), Greene (2018), and other books dedicated to regression analysis. Fortunately, we do
not need to know matrix algebra to run a regression analysis using Stata. Using the menu system, we
can follow this sequence: Statistics → Linear models and related → Linear regression and then select
the y and x variables from the drop-down menus. Alternatively, we can run regression analysis with the
following command:

regress y x

where y is the dependent variable and x is the independent variable.

Let’s see how this works in practice. Returning to the example of the effect of mileage on the price of
cars, we can open the database cars4sale.dta and run the following command:

regress price mileage

The command and results are shown in Figure 12.6.



Description

Figure 12.6 Simple Regression Analysis

How do we interpret the information in Figure 12.6? In the upper right corner, we see that the number of
observations (cars) is 906. The F statistic is a test of the null hypothesis that all coefficients (excluding
the constant) are equal to 0. The “Prob > F” line gives the probability that an F statistic this large could
be generated by chance if the null hypothesis were true. Since it is 0.0000, this indicates that the
probability of getting this result would be very small if there were actually no linear relationship between
price and mileage.

“R-squared” refers to R2, the coefficient of determination of the observed values of y and the predicted
values of y (ˆy). In a linear regression model with a constant, R2can also be interpreted as the proportion
of the variance in y that can be explained by the model. In this case, mileage explains about 36% of the
variance in price across our sample of cars.

“Adj R-squared” refers to adjusted R2. One limitation of R2 is that, when you add an independent
variable to the model, R2 will always increase, even if the new variable does not help predict the
dependent variable. Adjusted R2 is adjusted for the number of independent variables, so it will increase
only if the new variable increases the explanatory power of the model more than would be expected by
chance. Adjusted R2 is calculated as 1 − (1 − R2)(n − 1)/(n − k), where n is the number of observations
and k is the number of independent variables including the constant.

Looking at the bottom of Figure 12.6, we see a table showing a list of the variables including the
constant in the first column and a list of coefficients in the second column. In this case of simple
regression, there is just one independent variable plus the constant. The variables and coefficients can
be rearranged to form the equation that best fits the data as follows:

(12.6)

predicted price = 36784.76 + (−0.2124802 × mileage)

The coefficient for mileage (ˆβ
1

) is approximately −0.212. It tells us how much y changes given a one-unit
change in x. In this case, the coefficient indicates that the price declines by $0.212 or 21.2 cents for
each additional mile on the car. In other words, these cars tend to depreciate $212 for each additional
1,000 miles on the odometer. Graphically, −0.212 is the slope of the line plotting predicted price against
mileage.



The constant (ˆβ
0

) is 36,785. This represents the value of ŷ (predicted price) when x (mileage) is 0, given
this simple linear model. It is also called the intercept because, graphically, it indicates the value of ŷ
where the best-fit line “intercepts” the vertical (or y) axis.

The second column shows the standard error of the coefficient estimates. The standard error is a
measure of the precision of the estimate of the coefficient. If the model fits the data well, then the
residuals and the standard error will be small.

The third column gives the t statistic for each coefficient, calculated as the ratio of the coefficient and its
standard error. As a rule of thumb, a t statistic greater than 2 or less than −2 indicates that the
coefficient is significantly different from 0. However, the rule of thumb is redundant because Stata and
other statistical software packages also report p-values, which are a more direct measure of statistical
significance.

As described in Chapter 7, the p-value tells us the probability that we could get a value of ˆβ this large or
larger (in absolute value) if the null hypothesis (that the coefficient is 0) were true. In this case, the p-
value on the mileage variable is 0.000. This has been rounded off at three digits; it implies that there is
less than 0.0005 probability (less than 0.05% probability) that we would get a result this strong (or
stronger) if there were no relationship between price and mileage (that is, if β1 = 0). Similarly, the p-
value on the constant suggests that it is unlikely that the true intercept is 0 (that β0 = 0). These
probabilities are based on the assumption that there is a linear relationship between price and mileage,
as well as other assumptions discussed in Chapter 13. By convention, if a p-value is less than 0.05, the
coefficient is considered “significantly different from zero” or “statistically significant.” If the p-value is
less than 0.01, it is considered “statistically significant at the 1% level.”

The last two columns show the lower and upper limits of the 95% confidence interval. This means that
we are 95% sure that the true value of the parameter lies between these two numbers. The more
precise the coefficient estimate, the smaller the standard error, the larger the t statistic, the smaller the
p-value, and the narrower the confidence interval.

As discussed in Chapter 7, there is some controversy over the use of p-values. Sometimes, the p-value
is misinterpreted. Some researchers argue for a stricter standard, requiring a smaller p-value to consider
a relationship statistically significant. For example, social scientists have traditionally considered p-
values greater than 0.05 but less than 0.10 to be “weakly significant,” but recently, some have argued
that it is not worth reporting coefficients with p-values greater than 0.05.

To see the best-fit line generated by the regression analysis, we can return to the graphing command.
We can show both the scatter plot and the regression line with the following Stata command:

twoway (scatter price mileage) (lfit price mileage)

The first set of parentheses in the command tells Stata that we want to see a scatter plot of price and
mileage. The second set of parentheses indicates that we would like to add the “linear fit” line of price
and mileage to the same graph. The line in Figure 12.7 corresponds to the equation described in Figure
12.6 and Equation 12.6. The constant coefficient in Figure 12.6 (36,785) is the value of ˆβ

0

 in Equation
12.6 and corresponds to the price at which the line crosses the vertical axis in Figure 12.7. Similarly, the
mileage coefficient in Figure 12.6 (−0.2124802) is the value of ˆβ

1

 in Equation 12.6 and corresponds to
the slope of the line in Figure 12.7.



Description

Figure 12.7 Scatterplot of Price and Mileage with Regression Line

The line in Figure 12.7 does a fairly good job in describing the pattern of prices, but we can do better.
First, the predicted price is clearly incorrect on the right side of the graph where it turns negative. No
matter how many miles are on the odometer, a working car will have a positive price! Second, we know
that there are numerous other factors that affect the value of a car. For example, a Mercedes will be
worth more than a Honda even if they both have the same mileage. The next section shows how
regression analysis can incorporate multiple explanatory variables.

12.5 MULTIPLE REGRESSION ANALYSIS
Multiple regression analysis refers to the case where the analysis predicts the value of a dependent
variable based on multiple independent variables in addition to the constant. A linear multiple regression
model assumes that the data follow a pattern like this:

(12.7)

y = β

0

+

k−1

∑

i=1

β

i

x

i

+ ε

where



k is the number of independent variables (including the constant)

β0 is the constant or y intercept

βi is the coefficient on xi where i = 1 to k − 1

xi is one of the k − 1 independent variables

ε is the error term

As with simple regression analysis, the true values of the βs in Equation 12.7 are unknown, but we
can estimate them from the observed values of the dependent variable (y) and the independent
variables (xi). The estimated coefficients (denoted by ˆβ

0

, ˆβ
2

,…, ˆβ
k−1

) are those that minimize the sum of

squared residuals (∑e2). Each estimated coefficient ˆβ
i

 is interpreted as the effect of a one-unit increase
in the corresponding independent variable, xi on the dependent variable while holding constant all other
independent variables.

Let’s return to the model of car prices. We know that mileage is not the only characteristic that affects
the price of cars. For example, the price is also influenced by the fuel type—that is, whether the car has
a gasoline engine, a hybrid gas-electric system, or an electric motor. In the cars4sale.dta database, the
variable fueltype has three values: 1 for a gasoline car, 2 for a hybrid, and 3 for an electric car. The
fueltype variable is a nominal categorical variable, meaning that there is no natural order and we cannot
assume that the intervals between them are the same. For example, we cannot assume that the
difference in value between a gas car and a hybrid is the same as the difference in value between a
hybrid and an electric car.

Independent variables that are categorical (nominal or ordinal) should be represented in regression
models by one or more dummy variables, each taking a value of 0 or 1. Dummy variables are also
called dichotomous, binary, or indicator variables. For example, the hybrid dummy variable will be equal
to 1 for hybrid cars and 0 for other cars (gas and electric).

However, the number of dummy variables included in the regression analysis must be equal to the
number of categories minus one4. In other words, one category is omitted from the regression. The
coefficients of the included dummy variables represent the effect on the dependent variable of being in
that category rather than the omitted category, as illustrated in Table 12.2. For this reason, it is
sometimes called the reference category



Categorical
Variable Categories Number of

Categories

Number of
Dummy
Variables
Needed

Example of
Dummy
Variables to
Include

Interpretation of
Coefficients

Income
quintile

Poorest, Lower-
middle, Middle,
Upper-middle,
Richest

5 4 Lower-
middle,
Middle,
Upper-
middle,
Richest

Effect of being in this
category relative to
being in the Poorest
category

Marital
status

Single, married,
divorced,
widowed

4 3
Single,

divorced,

widowed

Effect of having each
status relative to being
married

Region North, South,
Central, East,
West

5 4 North, South,
East, West

Effect of living in each
region relative to living
in the Central region

If we need to exclude one category when creating a set of dummy variables, how do we decide which
one to omit? One convention is to omit the dummy associated with the category with the largest number
of observations. Another convention is to omit the category associated with the lowest values of the
dependent variable so that the coefficients on the dummy variables will be positive. But it does not really
matter. The R2 and the coefficients and p-values of all other variables will be the same. The decision of
which category to omit will only affect the constant and the coefficients on the dummy variables
representing the categorical variable, but even these differences do not affect the predicted values of
the dependent variable.

In the case of fueltype, there are three categories, so we need two dummy variables. We will use
gasoline as the omitted category both because it is the most common type of car and because it is
associated with a lower price. Thus, we need to define dummy variables for hybrid and electric cars.
One option is to use gen and replace commands:



gen  hybrid = 0 if fueltype==1 | fueltype==3 
replace hybrid = 1 if fueltype==2 
gen  electric = 0 if fueltype==1 | fueltype==2 
replace electric = 1 if fueltype==3

The first two lines create a new variable, hybrid, equal to 0 if fueltype is 1 or 3 and equal to 1 if fueltype
is 2. The second two lines define a new variable, electric, in a similar way. It is not necessary to line up
the commands as we did here, but it is good practice to make it easier to check for errors.

Using gen and replace to create dummy variables is effective but somewhat cumbersome. We can
streamline the code by using the recode … gen command. The recode command was described in
Chapter 5, but adding the gen option creates a new variable rather than changing the values of the
original variable. With this command, we can create the two dummy variables with two commands. The
first line that follows specifies that if fueltype is 1 or 3, the new hybrid variable will be 0, while if fueltype
is 2, the new hybrid variable will be 1. The second line defines the new variable, electric, in a similar
way.

recode fueltype (1 3=0) (2=1), gen(hybrid) 
recode fueltype (1 2=0) (3=1), gen(electric)

Finally, the most streamlined approach to converting a categorical variable, such as fueltype, into a set
of dummy variables is to use what Stata calls “factor variables” by attaching an “i.” prefix to the
categorical variable in the regress command itself:

regress price mileage i.fueltype

Instead of the four gen and replace commands or the two recode … gen commands, the factor
variable approach requires just two characters! For now, we will use the recode … gen method to
calculate dummy variables because it is more transparent.

The commands to define hybrid and electric dummy variables and run the new regression model are
shown in Figure 12.8, along with the regression results. The value of R2 is 0.3972, indicating that the
three independent variables explain about 40% of the variation in price. Not surprisingly, three
independent variables plus the constant explain a larger share of the variation in price than mileage and
the constant alone. The adjusted R is also higher than in the earlier model, indicating that the new
variables are contributing significantly to the explanatory power of the model. This is confirmed by the
fact that the p-values of the hybrid and electric coefficients are less than 0.01, indicating that both are
statistically significant at the 1% level.



Description

Figure 12.8 Multiple Regression (Version 1)

The coefficients for each variable give us information on the linear equation that best fits our data:

price = 35306.36 + (−0.198785 × mileage) + (6318.549 × hybrid) + (12981.94 × electric)

The coefficient on mileage is about −0.20, meaning that each additional mile on the car is associated
with a price reduction of $0.20 or 20 cents. This is similar but not identical to the coefficient in the
previous regression model that did not include the dummy variables to represent fuel types (see Figure
12.6). The coefficient on the hybrid variable indicates that the price of a hybrid car is $6,319 more than a
gasoline car (the omitted category) given the same mileage. Similarly, an electric car has a price
$12,981 more than gasoline car with the same mileage.

We can graph the best-fit line for the gas, hybrid, and electric models separately using the fact that Stata
stores the coefficients from the most recent model as _b[varname], where varname is the name of the
independent variable for that coefficient. Thus, we can calculate predicted values for each model as
follows:

gen price_gas = _b[_cons] + _b[mileage]*mileage 
gen price_hyb = _b[_cons] + _b[mileage]*mileage + _b[hybrid] 
gen price_ele = _b[_cons]+ _b[mileage]*mileage + _b[electric] 
twoway (line price_gas mileage) /// 
(line price_hyb mileage) /// 
(line price_ele mileage)

Note that the three forward slashes (“///”) indicates that the command continues on the next line. The
output of these commands is shown in Figure 12.9:



Description

Figure 12.9 Predicted Value of Each Type of Car

The decision whether to include the set of dummies should be based on a joint test, where the null
hypothesis is that all the coefficients on the dummy variables representing the categorical variable are
equal to zero. The joint Wald test will give the same result regardless of which category is omitted. We
can do a joint test of the hypothesis that all the coefficients on the dummy variables are equal to zero
using the test command. This command can be used to test a variety of null hypotheses, but if the
command is followed by a list of variables, it will test the hypothesis that all the corresponding
coefficients are equal to zero.

The menu procedure would be as follows: Statistics → Postestimation → Tests, contrasts, and
comparisons of parameter estimates → Linear tests of parameter estimates → Create, then select the
dummy variables from the drop-down menu. In this case, we would select hybrid and electric. The test
command and its output are shown in Figure 12.10.

Figure 12.10 Testing Joint Hypotheses

The first two lines of Figure 12.10 show the null hypothesis that the hybrid and electric coefficients are
both equal to zero. The last line of the output gives the p-value, which suggests that we can reject the
null hypothesis that the two coefficients are both equal to zero at the 1% confidence level.

In summary, when using a set of dummy variables to represent a categorical independent variable, one
of the set must be omitted from the regression model. The choice of which dummy to omit has no effect



on the predicted values of the dependent variable. Likewise, the choice of which dummy to omit will
have no effect on the joint test of the statistical significance of the set of dummy variables.

As a final exercise, let’s add another variable to the regression model: a dummy to distinguish new from
used cars. We can create a dummy variable called new from the existing variable newused. Since
newused is coded 1 for new cars and 2 for used cars, we can create the new variable with the recode…
gen command as shown in the first line of Figure 12.11. The regression command with one dependent
variable followed by the four independent variables is also shown in Figure 12.11, along with the results.

Description

Figure 12.11 Multiple Regression (Version 2)

In this version of the model, the coefficient on mileage indicates that the value declines by about 16
cents per mile. The hybrid dummy coefficient implies that hybrid cars are priced $3,663 more than
gasoline cars, while the electric dummy coefficient tells us that electric cars are valued $9,254 more
than gas cars. And the coefficient on the dummy variable for new cars tells us that a new car is worth
$9,426 more than a used car after controlling for mileage and fueltype. This confirms the saying that a
car depreciates (almost) $10,000 as soon as it is driven off the car dealer lot.

How do we explain the differences in the coefficients between this model (Figure 12.11) and the earlier
model (Figure 12.8)? The hybrid and electric coefficients are substantially smaller than in the earlier
version of the model. Part of the higher price of hybrids and electric cars in the earlier model was
because more of them are new compared to gas cars. The rapid growth in electric cars means that
there are relatively few used electric cars on the market.5 In statistical terms, hybrid and electric are
positively correlated with the new dummy, so adding the new dummy to the model reduced the
estimated effect of the hybrid and electric variables. In more intuitive terms, the early version of the
model indicated that hybrid and electric cars were more expensive partly because most of them were
new, not only because they were hybrid or electric. Once we control for newness, the price gap is
smaller, but it is a more accurate representation of the difference in price between electric and hybrid
cars compared to gas cars. To the extent that electric cars tend to be larger or have more advanced
features, adding these variables to the model would further reduce the coefficient on the electric dummy
variable, hence the implied price difference between gas and electric cars.

12.6 PRESENTING THE RESULTS



To describe the results, the researcher should focus on the independent variables that have a
statistically significant and meaningful effect on the dependent variable. By statistically significant, we
mean that the p-value is less than 0.05, indicating that the finding is unlikely to have occurred by chance
if there is, in fact, no relationship. By meaningful, we mean that the size of the effect is important enough
to affect policy or other decisions related to the topic of the study. With a large sample size, it is quite
possible that a relationship is statistically significant (measured with little error) but too small to be of
practical importance.

In addition, it may be worth identifying independent variables that did not have a statistically significant
relationship with the dependent variable if this contradicts or challenges widely held beliefs. However,
the size of the coefficient should not be discussed unless it is statistically significant.

For a newspaper or magazine targeting a nontechnical audience, we might summarize the car price
regression results as follows:

Statistical analysis reveals that the price of cars is influenced by mileage, whether it is new or
used, and whether it has a gasoline car, a hybrid, or an all-electric car. For example, each
additional mile on the odometer is associated with a reduction in value of 16 cents. In addition,
on average a new car loses $9,246 in value as soon as it is purchased. Finally, after controlling
for mileage, age, and newness, electric cars are priced at about $9,254 more than a gas car,
while hybrids go for about $3,663 more than a gas car.

For an academic audience, we can assume some familiarity with regression analysis and provide some
additional details. We can use the etable command to generate a table of regression results in Word
format. In its simplest form, the etable command uses the most recent regression analysis and sends
the output to a Word file.

etable, export(car price model.docx)

The export option is used to indicate the name and type of the file to be created. There are numerous
options that allow you to specify the statistics to be included and the layout of the table, some of which
are discussed in Chapter 14. If no options are specified, the default is a simple table showing the
coefficients, standard errors, and the number of observations, as shown in Figure 12.12.

Description

Figure 12.12 Regression Output In Word Format Using etable

In writing up the results, it is important to consult the journal for which you are writing. For example,
some journals encourage the use of confidence intervals (CIs), while others prefer authors to give p-



value or the statistical significance of the coefficients. Below is a possible write-up for a technical
audience:

We used regression analysis to explore the determinants of the price of 902 new and used cars
advertised on cars.com in the vicinity of Burlington, Vermont, in July 2023. The independent
variables were mileage and dummy variables for new cars, electric cars, and hybrid cars, with
used internal combustion engine (ICE) cars being the omitted reference category. All four
coefficients are statistically significant and of the expected sign. The coefficient on mileage is
−0.158 (p < 0.001), indicating that each additional mile reduces the value of the car by 16
cents. In addition, the coefficient on the dummy variable representing the hybrid cars is 3,663
(p < 0.05), which implies that hybrid models are priced an average of $3,663 more than ICE
cars, the omitted category, after controlling for mileage and newness. The coefficient on the
electric car dummy variable is 9,254 (p < 0.001), suggesting that the price of an electric car is
about $9,254 more than an ICE car, holding mileage and newness constant. A Wald test of the
joint significance of the hybrid and electric dummy variables rejects the null hypothesis that
both coefficients are equal to zero at the 1% confidence level.

These results would normally be followed by a discussion that places the findings in the context of
previous research, identifying areas of agreement and areas where these results differ from previous
studies. Finally, it is often useful to identify questions that remain unanswered and suggest future areas
for research. Chapter 16 provides more information on organizing the research paper.

12.7 SUMMARY OF COMMANDS USED IN THIS CHAPTER
This section summarizes the Stata code used in the chapter (Table 12.3). In addition, all Stata code
used throughout the book is summarized in Appendix 1.

Function Stata command(s)
Scatter plots and line of best fit twoway (scatter price mileage) (lfit price

mileage)
Correlation pwcorr price mileage
Regression analysis regress price mileage new hybrid electric



Function Stata command(s)
Generating dummy variables (method 1)

gen hybrid = 0 if fueltype==1 | fueltype==3

replace hybrid = 1 if fueltype==2

Generating dummy variables (method 2) recode fueltype (1 3=0) (2=1), gen(hybrid)
Calculate and graph predicted values gen price_hyb = _b[_cons] +

_b[mileage]*mileage + _b[hybrid]
Test the joint hypothesis that a set of coefficients
are all equal to zero

test hybrid electric

Generate a table of regression results in Word
format

etable, export(car price model.docx)

EXERCISES
1. You are interested in whether the price of cars differs across different makes. In particular, you want

to know whether being a Cadillac is associated with having a higher price, after controlling for
mileage and age. Create a dummy variable called caddy that is equal to 1 for Cadillacs and 0 for
other brands, and carry out a regression analysis.

a. What is the coefficient on the Cadillac variable, and is it statistically significant?
b. How would you describe this finding for a newspaper article?
c. How would you describe the finding for an academic journal article?

2. You want to examine the relationship between a college’s rank according to U.S. News and World
Report and factors that may influence it such as their acceptance rate and the amount of the
college’s endowment per full-time student. Using the “Liberal Arts Colleges - USNews” data set, run
a regression with the college rank (USNewsRank) as the dependent variable and the acceptance
rate (adm_rate) and endowment per student (endowpp) as the independent variables.

a. Write out the equation for the model using the coefficients from your results.
b. What percentage of the variation in rank is explained by these two independent variables?
c. What is the null hypothesis for the F value in the model?
d. How would you interpret the coefficient for pct_adm in the model? In other words, write out a

full sentence that explains the meaning of the coefficient. Is it statistically significant?
3. Suppose you have sample of 200 college students who are economics majors, business majors,

and math majors. You run a regression to determine how absences affect their grade point average
(GPA) and generate the equation below. All of the coefficients are statistically significant at the 5%
level.

GPA = 3.5 − 0.2 × Absences − 0.3 × Economics_major − 0.1 × Business_major

where

GPA = the cumulative grade point average of a student

Absences = the number of times that a student skips a class per term on average

Economics_major = 1 if the student is an economics major and 0 if not

Business_major = 1 if the student is a business major and 0 if not

Math major is the omitted category for major



a. Draw a graph of the GPA as a function of absences with separate lines for math, economics,
and business majors.

b. What is the slope of your line or lines in your graph?
c. Explain in words the meaning of the coefficient on absences.
d. Explain in words the meaning of the coefficient on economics major.

4. Violence in public schools has led to an increase in the total number of full-time security guards and
other sworn law enforcement officers on school campuses. Use the School Survey on Crime and
Safety (pu_ssocs16.dta) to examine the relation between the total number of disciplinary actions
taken by a school (DISTOT16—the dependent variable) and the number of full-time security guards
or officers on campus (SEC_FT16). Include the school size by creating three dummy variables for
size based on the variable FR_SIZE.

a. Based on your results, interpret the coefficients on your dummy variables related to size.
b. Interpret your results for the number of full-time security guards or officers on campus.
c. Comment on the endogeneity problem of this regression equation related to disciplinary actions

and security guards or law officers.
5. Various factors affect household income. We can use the 2021 General Social Survey to explore

some of these relationships. Using the file GSS2021.dta, run a regression of income (“realinc”) as a
function of age (“age”) and a dummy variable for female respondents. You will need to create the
female dummy variable from the “sex” variable.

a. Is the education variable statistically significant as a predictor of household income? How
would you interpret the size of the coefficient?

b. How would you interpret the coefficient on the dummy variable representing females?
c. How would you describe the effect of age on household income? Why do you think age is not

statistically significant?
d. Suppose you wanted to estimate the effect of having a college education compared to not

having one. How would you create a dummy variable to estimate this? What is the effect on
household income of having a college education compared to not having one?

KEY TERMS

coefficient of determination

confidence level

dependent variable

independent variables

intercept

multiple regression analysis

non-technical audience

predicted values

regression analysis

residual

simple regression analysis

technical audience



Descriptions of Images and Figures
Back to Figure

The horizontal axis represents “mileage (miles)” ranging from 0 to 200,000 in increments of 50,000. The
vertical axis represents “Price (US$)” ranging from 0 to 100,000 in increments of 20,000. The cluster is
denser near the origin.

Back to Figure

The table is titled “. pwcorr price mileage, sig.” The content of the image is given in the following table.

 Price Mileage
Price 1.0000 -
Mileage negative 0.6019 1.0000

0.0000 -

Back to Figure

The scatterplot for “R square =0.04” is drawn on the left (loosely packed), “R square =0.41” in the middle
(dense in the middle), and “R square =0.88” on the right (dense with an increasing trend). In all three
graphs, the x-axis ranges from 0 to 250 and the y-axis ranges from 0 to 300, both in increments of 50.

Back to Figure

The scatterplot for “R square =0.09” is drawn on the left (loosely packed), “R square =0.475” in the
middle (dense in the middle), and “R square =0.89” on the right (dense with an decreasing trend). In all
three graphs, the x-axis ranges from 0 to 250 and the y-axis ranges from 0 to 350, both in increments of
50.

Back to Figure

Both axes range from 0 to 10 in increments of 2. There are 10 plots scattered across the graph. The
regression line passing through the plots is increasing. The line approximately starts at (0, 5.1), passes
through (2, 6.1), (4, 7.2), (6, 8.2), (8, 9.3) and ends at (9, 9.8). The regression line is marked as “beta 1
cap = slope = delta y over delta x.” The distance between the x-axis and the regression line at 0 and 6
are marked as “beta cap 0” and “y cap.” The distance between the regression line and the plot at (6,
9.8) is marked as “e.”

Back to Figure

The table is titled “regress price mileage.” The content of the table on the top is given as follows.

Source SS df MS
Model 6.9124e+10 1 6.9124e+10
Residual 1.2167e+11 904 134591340
Total 1.9080e+11 905 210823276

The list of values to the right of the table is given as follows.

“Number of obs = 906

F(1, 904) = 513.59

Prob>F = 0.0000



R-squared = 0.3623

Adj R-squared = 0.3616

Root MSE = 11601”

The table at the bottom is given as follows.

price Coefficient Std. err. t P>|t| [95% conf. interval]
mileage negative

.2124802
.0093759 negative

22.66
0.000 negative

.2308812
negative
.1940792

_cons 36784.76 549.8357 66.90 0.000 35705.66 37863.87

“Price” and “mileage; _cons” are highlighted and marked as “Dependent variable (y)” and “independent
variable (x)” respectively. The values on columns 2 through 5 are marked as “Estimated coefficients
(beta 1 and beta 0),” “Standard error of the coefficients),” “t statistics,” “p-values,” and “Confidence
intervals for each coefficient” respectively.

Back to Figure

The horizontal axis represents “mileage (miles)” ranging from 0 to 200,000 in increments of 50,000. The
vertical axis ranges from 0 to 100,000 in increments of 20,000. The plots represent “Price (US$)” and
the line represents “fitted values.” The cluster is denser near the origin. The line approximately starts at
(0,36000), passes through (50000,25800), (100000,15500), (150000,5200), and then ends at
(195000,-4000).

Back to Figure

The table is titled “regress price mileage hybrid electric.” The content of the table on the top is given as
follows.

Source SS df MS
Model 7.5857e+10 3 2.5286e+10
Residual 1.1415e+11 898 127118801
Total 1.9001e+11 901 210887932

The list of values to the right of the table is given as follows.

“Number of obs = 902

F(3, 898) = 198.91

Prob>F = 0.0000

R-squared = 0.3992

Adj R-squared = 0.3972

Root MSE = 11275”

The table at the bottom is given as follows.

price Coefficient Std. err. t P>|t| [95% conf. interval]
mileage Negative .0093256 Negative 0.000 Negative Negative



.198785 21.32 .2170875 .1804825
hybrid 6318.549 1600.939 3.95 0.000 3176.532 9460.567
electric 12981.94 1905.485 6.81 0.000 9242.221 16721.67
_cons 35306.36 568.7436 62.08 0.000 34190.14 36422.59

Back to Figure

The horizontal axis represents “mileage (miles)” ranging from 0 to 200,000 in increments of 50,000. The
vertical axis represents “Price (US$)” ranging from 0 to 100,000 in increments of 20,000. The three
decreasing lines represent “Price_gas,” “Price_hyb,” and “Price_ele.” The approximate data on the
graph are given in the following table.

Mileage (miles) Price_gas Price_hyb Price_ele
0 35000 42000 48000
50,000 25250 32250 38250
100000 15500 22500 28500
1,50,000 5750 12750 18750
200000 -4000 3000 9000

Back to Figure

The text on the top reads “. recode newused (1 = 1) (2 = 0), gen (new)

(763 differences between newused and new)”

The table is titled “regress price mileage new hybrid electric.” The content of the table on the top is given
as follows.

Source SS df MS
Model 8.4462e+10 4 2.1116e+10
Residual 1.0555e+11 897 117667695
Total 1.9001e+11 901 210887932

The list of values to the right of the table is given as follows.

“Number of obs = 902

F(4, 897) = 179.45

Prob>F = 0.0000

R-squared = 0.4445

Adj R-squared = 0.4420

Root MSE = 10847”

The table at the bottom is given as follows.

price Coefficient Std. err. t P>|t| [95% conf. interval]
mileage Negative

.1581854
.0101509 Negative

15.58
0.000 Negative

.1781077
Negative
.138263



new 9425.751 1102.238 8.55 0.000 7262.486 11589.02
hybrid 3663.098 1571.266 2.33 0.020 579.313 6746.883
electric 9254.045 1884.4 4.91 0.000 5555.699 12952.39
_cons 32122.4 661.8525 48.53 0.000 30823.44 33421.36

Back to Figure

The content of the image is given in the following table.

 Price
Mileage (miles)

Negative 0.199

(0.009)

Hybrid
6318.549

(1600.939)

Electric
12981.944

(1905.485)

Intercept
35306.265

(568.744)

Number of observations 902



13 REGRESSION DIAGNOSTICS



CHAPTER PREVIEW

Topics Explanation
Background Linear regression analysis generates the best equation to describe the

relationship between one dependent variable and one or more
independent variables, but it depends on several assumptions about
the data. This chapter discusses ways to test these assumptions and
remedy the problem if it is found.



Topics Explanation
Measurement
error Assumption: Regression analysis assumes the independent variables

are measured without error.

Diagnosis: sum... detail, predict... resid, predict... cooksd

Remedies: Minimize errors in data collection. Clean data of obvious
errors. Try alternative indicators. Take into account in interpretation.

Specification error
Assumption: Functional form is correct and all relevant independent
variables are included.

Diagnosis: rvpplot, rvfplot, ovtest, test significance of new variables,
quadratic terms, and interaction terms

Remedy: Include new variables, quadratic terms, or interaction terms if
statistically significant.

Multicollinearity
Assumption: Independent variables are not highly correlated with one
another.

Diagnosis: correl, vif test

Remedy: Test joint significance of correlated variables and explain in
text.

Heteroscedasticity
Assumption: Variance of residuals is constant.

Diagnosis: rvpplot, rvfplot, hettest

Remedy: vce(robust) option, generalized least squares

Nonnormality
Assumption: Residuals are normally distributed.

Diagnosis: sktest

Remedy: Transform variables, take into account in interpretation.

Endogeneity
Assumption: Independent variables are exogenous.

Diagnosis: Largely based on theory and experience rather than
statistical tests

Remedy: Instrumental variables regression, panel data regression, and
experimental methods



13.1 INTRODUCTION
In Chapter 12, we said that ordinary least squares (OLS) regression analysis gives us the equation that
best fits the data, in the sense that it is the equation that minimizes the sum of squared residuals (∑e2).
Under certain conditions, OLS gives us the best linear unbiased estimates (BLUE) of the coefficients.

Best means the lowest variance of the error terms.

Linear means that the dependent variable is a linear function of the independent variables.

Unbiased means that the estimated coefficients will not be systematically higher or lower than the
true coefficients across different samples.

What are the conditions needed for OLS results to be BLUE?

The independent variables are measured without error.

The regression equation is correctly specified, meaning there are no omitted variables and it uses
the right functional form (e.g., linear, quadratic, logarithmic, etc.).

None of the independent variables is perfectly correlated with any other independent variable.

The variance of the errors is constant.

The error terms are not correlated with each other.

The independent variables are exogenous.

One additional condition is convenient for the interpretation of the OLS results but not necessary for
BLUE: that the error terms are normally distributed.

What happens to OLS regressions if these conditions do not hold? What follows is a list of potential
problems associated with violations of these assumptions:

Measurement error: The independent variables are measured with error.

Specification error: The equation in the model is missing important variables or has the wrong
functional form.

Multicollinearity: Two or more independent variables are perfectly or closely correlated with each
other.

Heteroscedasticity: The variance of the error term is not constant.

Autocorrelation: The error terms are correlated with each other.

Endogeneity: The “independent” variables are influenced by the dependent variable or both
dependent and independent variables are influenced by factors omitted from the model.

Nonnormality: The error terms in the regression model are not normally distributed.



This chapter considers the consequences of violating each assumption, how to test to see if the
assumption is valid, and how to improve the analysis if the assumption is not valid. One of these issues,
autocorrelation, is relevant primarily in time-series data, so this topic will be reserved for Chapter 15
when we give a brief review of some advanced topics, including time-series analysis.

13.2 MEASUREMENT ERROR
Regression analysis assumes that the dependent variable is measured with some error but that the
independent variables are measured without error. In actual research, particularly social science
research, the independent variables are almost always subject to some measurement error, meaning
that values of the variable in the database differ from the true values of the variable due to errors or
deception by the respondent, mistakes by the enumerator, or data entry errors. In general,
measurement error in an independent variable will cause its regression coefficient to be biased toward
zero1. This will underestimate the size of the effect of the independent variable and will reduce the
likelihood of detecting a real effect. (This is Type II error, the error of not rejecting a null hypothesis when
it is false.)

We can demonstrate this by adding a random number to one of the independent variables in our car
price data to simulate measurement error. Then we compare the results with and without the simulated
“error.” The Stata function rnormal(m,s) generates a normally distributed random variable with mean m
and standard deviation s. In the example in Figure 13.1, we add some artificial “measurement error” to
the variable mileage by adding a random number with mean 0 and standard deviation 16,000, roughly
one-half of the mean value of mileage. The set seed command ensures that anyone running these
commands will get the same random numbers and the same results2.

Figure 13.1 Multiple Regression with Additional Measurement Error

The results in Figure 13.1 show that the coefficient on the age variable is now −0.121 rather than −0.158
in Figure 12.11. By adding some “measurement error” to the mileage variable, the estimated coefficient
is now smaller in absolute value, reflecting the bias toward zero.

How do we find measurement errors? One approach is to look at the extreme values of individual
variables. The summarize command with the detail option will show us some useful information about



the distribution of a variable (Figure 13.2).

Figure 13.2 Detailed Statistics on the Mileage Variable

A rule of thumb is to check observations for which the value is more than 3 standard deviations below or
above the mean. In this case, it would be 37,709 ± (3 × 40,660) or between −84,271 and 159,689. Of
course, any negative numbers for mileage would raise a red flag. We can use the browse… if
command to inspect high-mileage cars3:

browse make model year mileage if mileage>160000 & mileage!=.

The results show there are 10 cars in the database with between 160,000 and 200,000 miles on the
odometer, which is high but not difficult to believe. Outliers are not necessarily errors but should be
checked, if possible.

A second approach to finding suspicious data is to examine observations that are outliers in the
relationship between dependent and independent variables. In other words, we check cases with large
residuals (e), defined as the observed value of the dependent variable (y) minus the predicted value (ŷ).
To calculate the residuals from the most recent regression analysis, we use the command predict
newvar, resid, where newvar is the name we wish to assign to the residual. The first command below
will calculate the residual and give it the name e. The second command will give us various statistics
about the residual, including the five largest and the five smallest (negative) values:

predict e, resid 
sum e, detail

If we run these commands after the regression model in Figure 12.11, the results (not shown) reveal that
the largest outlier is 62,584, meaning the actual price is $62,584 greater than the predicted price. We
can look at the data for all observations with residuals greater than 50,000 with the following command:

browse if e>50000 & e!=.



There are five observations (cars) with residuals greater than 50,000, four of which are Cadillac
Escalades. This indicates that Escalades are more expensive than other cars given their age, mileage,
newness, and fuel type. This is not surprising considering that the Escalade is a large, luxury sport utility
vehicle. The residual reflects the effect of characteristics not included in the model, like horsepower,
size, and features. The large residual does not suggest an error in this case.

The third approach is to look for observations that have the greatest influence, or leverage, on the
coefficients. An observation will have a lot of leverage if the value of an independent variable is far from
its mean. Cook’s distance indicator, or Cook’s D, measures the effect of removing an observation on the
estimated coefficients. Some researchers define an outlier as an observation with a Cook’s D value
greater than 1. Others look for observations where the Cook’s D is at least 3 times greater than the
mean value of Cook’s D. Cook’s D can be calculated using the menu system as follows: Statistics →
Postestimation → Predictions → Predictions and their SEs, leverage statistics, distance statistics, etc.
→ Cooks D, then type in a new variable name and click on “Submit.”

Alternatively, we can calculate Cook’s D for the most recent regression analysis with the command
predict newvar, cooksd, where newvar is the name we want to give to the new variable. Then, we can
examine the outliers with the browse commands, as shown here.

predict CooksD, cooksd 
browse if CooksD>1 & CooksD!=.

In the car data set, there are no observations for which the Cook’s D is greater than 1.

It is important to note that that not all outliers are caused by measurement error. One car in the
database is recorded as being 47 years old, but looking at the original advertisement, the photo
confirms that it is a 1976 Honda Civic, one of the first generations imported into the United States. In
addition, not all errors are outliers: It is quite possible for a measurement error not to be an extreme
value and to have a low value of Cook’s D. Nonetheless, the tests for measurement error often depend
on errors being outliers.

Below are a few guidelines to reduce measurement error:

The best way to minimize measurement errors is to avoid them in the first place with careful data
collection and data entry. Software for online surveys or for electronic data collection often allow the
researcher to set upper and lower limits. If one tries to enter a number outside this range, the
program can be designed so that the user is either warned that it is an extreme value or blocked
from entering an extreme value.

In cleaning the data, the researcher should replace a number that is impossible (e.g., age = 140)
with a missing value. However, it is not good practice to replace numbers that are merely unlikely
(e.g., age = 100). As mentioned before, not all outliers are data errors.

Some researchers use rules for “trimming” data, such as eliminating values that are more than 3
standard deviations from the mean. This practice should be used conservatively and must be
disclosed in writing up the results.

Some researchers choose to use alternative regression methods that are less sensitive to outliers.
These methods are briefly described at the end of Section 13.6.

Finally, it is always useful to take into account possible effects of measurement error in interpreting
the results of regression analysis. As mentioned earlier, measurement errors tend to bias
regression coefficients toward zero.



Researchers must take care that data cleaning follows transparent and consistent rules and that the
procedures are documented when describing the results. Furthermore, the cleaning should never be
driven by an effort to achieve a certain outcome. Aggressive data cleaning to achieve a desired finding
has resulted in several high-profile cases of research fraud, with severe professional consequences.

13.3 SPECIFICATION ERROR
Ordinary least squares (OLS) regression assumes that the specification of the regression equation is
correct, meaning it has the right independent variables and uses the right function to describe the
relationship between dependent and independent variables.

13.3.1 Types of Specification Errors
Three common ways that the specification of the model may be incorrect are as follows: (1) a relevant
variable is missing from the equation, (2) it fails to take into account nonlinearity in the relationship
between the dependent variable and one or more independent variables, and (3) it does not incorporate
interaction between independent variables.

13.3.1.1 Omitted Variables

The first type of specification error is omitted variables. Suppose a relevant independent variable is
omitted from a linear regression model, where “relevant” means that it influences the dependent
variable. If the omitted variable is uncorrelated with the other independent variables, then the estimated
coefficients in the model are unbiased. In this case, the only problem associated with omitting the
variable is that the explanatory power of the model (measured by the adjusted R2) is not as good as it
could be. On the other hand, if the omitted variable is correlated with one or more independent variables
in the model, it creates another problem: The estimated coefficients of those variables will be biased. An
example of this will be given later in this chapter.

13.3.1.2 Incorrect Functional Form

The second type of specification error is incorrect functional form, meaning the use of an incorrect
function describing the relationship between dependent and independent variables. The most common
problem with functional form is that the model is linear but the data follow a nonlinear pattern. For
example, in Figure 13.3, the data clearly follow a nonlinear U-shaped relationship. If we estimate the
relationship as if it were linear, we will get the best straight line that fits the data (the upward-sloping red
line), but it will not be a good description of the data. The predicted values of the dependent variable
would overestimate the observed values over some range of the independent variable and
underestimate them over another range. Modeling a nonlinear relationship as linear could also result in
heteroscedasticity, which could invalidate the estimated standard errors (as discussed later). Finally,
using a linear model on a nonlinear relationship reduces the explanatory power of the model. If the
nonlinearity is strong (as in Figure 13.3), the predictions from a linear model are seriously flawed.



Figure 13.3 Modeling a Nonlinear Relationship with a Linear Model

In the car price regression model, we use a linear equation to represent the relationship between price
and mileage, meaning that each additional mile has the same effect on the value of the car (−16
cents/mile in the most recent version) regardless of the mileage on the car. But what if the actual
relationship is nonlinear? For example, it is certainly possible that the per-mile depreciation would be
greater for relatively new cars with low mileage than for high-mileage cars. Later, we will test this
hypothesis.

13.3.1.3 Missing Interaction Terms

The third type of specification error is that interaction between the independent variables is ignored in
the model. In the regression models we have considered so far, the effect of each independent variable
on the dependent variable is not affected by the other independent variables. However, the effect of one
independent variable on the dependent variable may depend on one or more other independent
variables.

In the model of car prices, we assume that the effect of mileage on price is not affected by whether the
car is gas, hybrid, or electric. In other words, the model assumes that an additional 1,000 miles has the
same effect on the price of a gas car as it does on the price of a hybrid or electric car. This is reflected in
Figure 12.9, where the three lines are parallel. The reason these lines are parallel is not because the
data tell us that all three types of cars depreciate at the same rate. Instead, they are parallel because
the functional form forces them to be parallel. Specifically, there is only one coefficient to represent the
effect of mileage on price.

Interaction between two independent variables can be represented by a term with the product of the two
independent variables, as shown at the end of the following equation:

(13.1)
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In Section 13.3.3, we show how an interaction term can be used to test whether the effect of mileage on
price differs across models.

13.3.2 Diagnosing Specification Error
How do we diagnose specification error? It is useful to start by examining patterns in the residuals. A
scatterplot of the residuals as a function of each of the continuous independent variables may show a U
pattern or inverted-U pattern, indicating a nonlinear relationship.

As mentioned previously, we suspect that the relationship between price and mileage might be
nonlinear, with per-mile depreciation being stronger (more negative) when the mileage is low and
weaker (less negative) as the mileage increases. In Stata, we can generate such a graph with the menu
system or using a command. Using the menus, we would follow this sequence: Graphics → Regression
diagnostics plots → Residual-vs-predictor plot, then select the explanatory variable from the list.
Alternatively, we can use the rvpplot command, where rvp is short for residual vs predictor:

rvpplot mileage

As shown in Figure 13.4, the scatterplot seems to show more positive residuals at low mileage and high
mileage, but the pattern is not as obvious as in our hypothetical example in Figure 13.3. Later, we show
how to test for nonlinearity.

Description

Figure 13.4 Scatter Plot of Residuals Against Mileage

Another method to check for specification error is to apply the Ramsey Regression Equation
Specification Error Test (RESET). In Stata, the Ramsey test can be implemented using the menu
system as follows: Statistics → Postestimation → Specification, diagnostics, and goodness-of-fit
analysis → Ramsey regression specification-error test for omitted variables. Alternatively, the Ramsey
test can be run with estat ovtest, which adds powers of the predicted dependent variable (ŷ) to the



original list of independent variables. An alternative version (estat ovtest, rhs) adds powers of the
independent variables as explanatory variables. (The initials rhs refers to right-hand side variables.) If
the coefficients on the new variables are jointly significant, we reject the null hypothesis of no
specification error.

To demonstrate the omitted variable test, we run the default version after the regression command, as
shown in Figure 13.5. The null hypothesis is that the model has no omitted variables, and the result in
Figure 13.5 indicates that we can reject the null hypothesis that there are no omitted variables. In other
words, these tests suggest there is evidence of omitted variables, one type of specification error.

Description

Figure 13.5 Omitted Variable Test

13.3.3 Correcting Specification Error
The remedy for specification error is relatively straightforward if we have additional relevant variables in
our data set: We add to the model any omitted variables that are statistically significant and experiment
with alternative functional forms to find a better fit. We also consider ways to check for specification error
due to (a) omitted variables, (b) nonlinear relationships, and (c) interaction between independent
variables.

13.3.3.1 Correcting Omitted Variables

First, we consider the case of specification error due to omitted variables. As discussed earlier, any
correlation between an omitted variable and an included variable will bias the estimate of the coefficient
on the included variable.

For example, the age of the car is not taken into account in our analysis. Because age is likely to be
correlated with mileage, it is important to add an age variable to get an unbiased estimate of the
coefficient for mileage. We first calculate the age from the model year of the car, then run the
regression4.

The results in Figure 13.6 show that the coefficient on the age variable is negative and statistically
significant. With each additional year, the price of a car declines by about $677 after controlling for
mileage, newness, and type of fuel. Also, the coefficient on mileage changed from −0.158 in Figure
12.11 to −0.113 in this version. Mileage and age are positively correlated, so in the earlier regression,
the variable mileage was picking up the effect of both mileage and age. When age is included as a
variable, the coefficient on mileage is smaller and probably more accurate.



Figure 13.6 Regression Correcting for Specification Error

13.3.3.2 Correcting the Functional Form

Theory or inspection of the data may lead us to believe that the relationship between the dependent
variable and one or more independent variables is nonlinear. One way to represent a nonlinear
relationship between the dependent variable (y) and an independent variable (x) is to add variables
representing powers of the independent variable, usually x2 and occasionally higher power such as x3.
Although the relationship between y and x is now nonlinear, it is still considered a linear regression
model because it is linear in the parameters, meaning that (a) the left side of the equation is the
dependent variable (y) or some transformation of y and (b) the right side of the equation is a linear
combination of independent variables (x) and/or transformed versions of those x variables.

In the analysis of the prices of cars, we considered whether the per-year depreciation might be greater
for new cars than for older cars. In other words, is the relationship between price and age nonlinear? We
can test this directly by calculating a quadratic term (age2) and adding it to the regression model, as
shown in Figure 13.7.



Description

Figure 13.7 Multiple Regression With Quadratic Term

The p-value on age2 is 0.000, indicating that the quadratic term is statistically significant at the 1% level.
This confirms that our intuition that the per-year depreciations is high in new cars and declines over
time. Using calculus, the effect of age on price is ∂price/∂age = βage + 2(βage2)(age)= −2435 + 2(50.8)
(age). This implies that a one-year-old car (age = 1) depreciates at $2,333 per year, while a five-year old
car depreciates at $1,927 per year.

Adding a quadratic term is only one way to represent nonlinear relationships in regression analysis.
Other widely used transformations include logarithms of y and/or the x variables:

Because these examples are linear in the parameters, they can be estimated using OLS and
implemented by the regress command in Stata. Appendix 8 illustrates graphically examples of these
nonlinear functional forms and explains how to calculate the marginal effect of x on y for each one.

13.3.3.3 Correcting for Missing Interaction Terms

The third type of specification error is missing interaction terms. Now we can return to the question of
whether the per-mile depreciation rates differ by fuel type. Because of the small number of used electric
cars in the sample (just 14), we cannot test the depreciation of hybrid and electric cars separately, but
we can compare the depreciation of gas cars with hybrid and electric cars combined. In other words, is

y = β

0

+  β

1

In(x

1

) +  β

2

In(x

2

)

In(y) = β

0

+ β

1

x

1

+ β

2

x

2

In(y)  =  β

0

+ β

1

In(x

1

) + β

2

In(x

2

)



the mileage coefficient the same for gas cars and other cars? To answer this question, we calculate a
new variable that is the product of the mileage variable and a dummy for alternative fuel cars (hybrid or
electric). Because a car cannot be both hybrid and electric, hybrid+electric is a dummy variable equal to
0 for gas cars and 1 for hybrid or electric cars.

gen mileage_alt = mileage*(hybrid+electric)

The new model can be written as follows:

price  =  β
0

+  β
1

mileage  +  β
2

(mileage _ alt)  +  β
3

new +  β
4

hybrid  +  β
5

electric  + ε

The third term on the right side of the equation is the interaction term. The effect of mileage on price for
gas cars is β1, while the effect of mileage on hybrid and electric vehicles is β1+β2.

If β2 is significantly different from zero, it implies that gas cars and alternative fuel cars depreciate at a
different rate than gas cars.

Figure 13.8 shows the calculation of the interaction term, the regress command, and the output. The
results in Figure 13.8 indicate that mileage_alt is not statistically significant at the 5% level. In other
words, there is no evidence that the per-mile depreciation rate differs between gas cars and alternate
fuel cars. We should note that the mileage_alt coefficient is fairly close to the threshold for statistical
significance (p = 0.070). It is possible that with a larger sample of hybrid and electric cars, this
coefficient would be statistically significant.

Description

Figure 13.8 Multiple Regression with an Interaction Term

In summary, we attempted to address the problem of specification error in three ways. First, we added
the age variable, which was statistically significant though it reduced the coefficient on mileage. Second,
we tried including an age-squared term, which was statistically significant, implying that the relationship
between price and age is nonlinear. Last, we tested the interaction between mileage and an alternate



fuel dummy variable, but the coefficient was not statistically significant. Unfortunately, making these
changes to the car price model did not change the results of the Ramsey RESET test (not shown).
Clearly, numerous other factors affect the price of cars, including horsepower, ride quality, passenger
space, cargo capacity, features, and even color. However, the changes did improve the predictive power
of the model, raising the value of R2 from 0.44 to 0.51.

13.4 MULTICOLLINEARITY
Multicollinearity refers to a condition in which two or more independent variables are closely correlated
with one another. Perfect multicollinearity refers to the case where there is a linear combination of
independent variables that is exactly equal to zero. For example, if one mistakenly includes variables for
the male population, the female population, and the total population, then there exists a linear
combination (males + females - total) that is equal to zero for all observations. If there is perfect
multicollinearity, the model cannot be estimated. In this case, Stata will simply omit one of the collinear
variables and report results for the rest of the model. This explains why we must omit one of the dummy
variables representing a categorical variable if there is a constant. For example, if we include dummy
variables for gas, hybrid, and electric cars in our price regression model, then the sum of the three
dummies minus the variable associated with the constant (1) would be zero for all observations.

Imperfect multicollinearity refers to a case where there is a linear combination of independent variables
that is close to zero. Because perfect multicollinearity is rare (and often the result of a mistake in
coding), imperfect multicollinearity is often referred to simply as multicollinearity. Multicollinearity can
occur if the model includes multiple variables that are measuring similar concepts, such as household
income and expenditure or two measures of intelligence. It results in large standard errors of the
coefficients and thus large confidence intervals. This is because the data do not allow us to estimate the
effect of each variable independently with much accuracy. However, (imperfect) multicollinearity is not a
violation of the assumptions behind OLS regression, so OLS results are still the best linear unbiased
estimates (BLUE).

A simple way to identify multicollinearity is by creating a correlation matrix with the independent
variables. If a pair of independent variables has a correlation coefficient greater than 0.8 or 0.9, there
may be a problem of multicollinearity. The correlation matrix of independent variables in the latest model
(Figure 13.7) is shown in Figure 13.9. The results indicate that only one pair of independent variables is
highly correlated: age and age2 have a correlation of r = 0.833.

Description

Figure 13.9 Correlation Among Independent Variables

A more advanced test is the variance inflation factor, or VIF, which is calculated for each independent
variable. The VIF for independent variable i is calculated as follows:
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variable is closely correlated with other independent variables, the R2 of this regression will be close to
1.0 and the VIF factor will be large. If an independent variable is not correlated with any other
independent variable, R2 will be close to 0 and the VIF will be close to 1. There is no consensus on the
VIF threshold for considering multicollinearity a problem. One rule of thumb is that a VIF greater than 10
deserves attention, but some researchers prefer a threshold of 4 (O’Brien, 2007).

In Stata, this VIF test can be implemented with the menu system as follows: Statistics → Postestimation
→ Specification, diagnostics, and goodness-of-fit analysis → Variance inflation factors. Alternatively, the
VIF test can be carried out with the command estat vif. Like other postestimation commands, it uses the
results from the most recent regression model. The results of the VIF test for our model are shown in
Figure 13.10. The table suggests multicollinearity in age and age2.

Description

Figure 13.10 Test for Multicollinearity

In our model, both the age and age2 variables are statistically significant. Since multicollinearity does
not result in bias in the coefficients or in the standard errors, and since both age and age2 are
significant, we don’t have to worry about multicollinearity in this case and can leave the model as is.



What is the remedy if we find strong multicollinearity and insignificant coefficients? Ideally, the
researcher would collect a larger sample of data so that each coefficient can be estimated with greater
precision despite the multicollinearity. In cases where this is not possible, some researchers propose
dropping one of the correlated variables so that the remaining one becomes statistically significant.
However, this “solution” just introduces omitted variable bias, because the remaining variable picks up
some of the effect of the omitted variable. In other words, the results are misleading because they
exaggerate the effect of the included variable and ignore the effect of the excluded variable. For this
reason, O’Brien (2007) cautions that some of the remedies for multicollinearity may be worse than the
original problem.

A better approach is to test the combined effect of the two variables by running an F test of the joint
hypothesis that both coefficients are equal to zero. In Stata, this is implemented with the command test
x1 x2, where x1 and x2 are the two correlated independent variables. If the null hypothesis is rejected,
the researcher can report that two variables are jointly significant, but the effects of each variable cannot
be independently measured because of the close correlation between the two.

13.5 HETEROSCEDASTICITY
An important assumption behind OLS regression is that the variance of the error term is constant. In
other words, OLS assumes that the dispersion of the errors is the same throughout the sample of
observations. This is called homoscedasticity. However, in practice, the variance of the errors may
differ, a condition called heteroscedasticity. Figure 13.11 shows what heteroscedasticity looks like on a
graph. The residuals (e) are small (in absolute value) for low values of x but are much larger for large
values of x, suggesting that the variance of the (unobserved) errors is not constant.

Figure 13.11 Example of Heteroscedasticity

In a regression model of food spending as a function of income, the errors might be larger among high-
income households than among low-income households. This is an example of heteroscedasticity being
a function of an independent variable. Or in our car price model, the errors might be greater for more
expensive cars. In this case, heteroscedasticity would be a function of the dependent variable.



What are the consequences of using OLS regression when heteroscedasticity is present? The
estimated coefficients are still unbiased but (a) the estimated coefficients are not efficient, meaning that
they do not make use of all available information in the data, and (b) the standard errors of the
coefficients are incorrectly measured.

We can visually check for heteroscedasticity by plotting the residuals (e = y − ŷ) against the fitted (or
predicted) values of the dependent variable (ˆy). In Stata, we can do this with the menu system or a
command. Using the menu system, the sequence is as follows: Graphics → Regression diagnostic plots
→ Residual-versus-fitted. Or we can run the command rvfplot. In both cases, it will use the most recent
regression model. If we request this plot after our car price regression analysis, we get the plot shown in
Figure 13.12.

Description

Figure 13.12 Scatterplot of Residuals Against Predicted Prices

In this graph, the variance of the residuals is represented by the degree of vertical dispersion of the dots
around the horizontal center line. The degree of dispersion seems smaller at low values of ŷ (near the
left side of the graph) than at high values (toward the right side), suggesting some heteroscedasticity. As
an aside, the three vertical lines of dots represent the new cars with zero mileage. All new gas cars have
the same predicted value (the first line), and likewise with the new hybrid and electric cars (the second
and third lines, respectively).

We can also check for heteroscedasticity by plotting the residuals against each of the continuous
independent variables using the command rvpplot. In our car price model, we would run rvpplot
mileage and rvpplot age to see if the variance of the residuals differs across values of these variables.
This command was demonstrated in Section 13.3 as a tool to check for nonlinearity.

The main statistical test for heteroscedasticity is the Breusch–Pagan/Cook–Weisberg test, which
assumes that the variance of the error term is a function of either the predicted value of the dependent
variable (ŷ) or some set of independent variables (x). Multiple versions of the Breusch–Pagan/Cook–
Weisberg test can be implemented with the Stata command estat hettest. Here are some of the more
common options:

estat hettest tests whether the variance of the residuals is a function of the predicted values of the
dependent variable and that the errors are normally distributed.



estat hettest varlist (where varlist is a list of independent variables) tests whether the variance of
the residuals is a function of the independent variables listed. It also assumes that the errors are
normally distributed.

estat hettest rhs tests whether the variance of the residuals is a function of all the independent
variables (rhs refers to variables on the right-hand side of the equation).

estat hettest, iid tests for heteroscedasticity without assuming that the errors are normally
distributed. It can be combined with varlist or rhs.

To run the Breusch–Pagan/Cook–Weisberg test for heteroscedasticity in the car price model, we can
use the estat hettest command or the menu system as follows: Statistics → Postestimation →
Specification, diagnostics, and goodness-of-fit analysis → Tests for heteroscedasticity, then select the
type.

Following the model of car prices from Figure 13.7 again, Figure 13.13 shows the test for
heteroscedasticity and the results. The low probability (<0.000) indicates a rejection of the null
hypothesis of constant variance (homoscedasticity) in our model.

Description

Figure 13.13 Test for Heteroscedasticity

When we find evidence of heteroscedasticity, there are two types of remedy. The first is to run a
regression with robust standard errors, also called Huber–White or sandwich standard errors. This is the
easiest approach. It uses a different method to calculate the standard error of each coefficient, resulting
in a wider confidence interval and lower p value for each coefficient. However, the estimated coefficients
are the same as the OLS estimates. In Stata, robust standard errors can be implemented by adding the
vce(robust) option to the regress command, as shown here.

regress y x1 x2, vce(robust)

A second approach to dealing with heteroscedasticity is to use a generalized least squares (GLS)
analysis, in which the variance of the residuals is estimated as a function of variables in the model. The
variance estimates are then used to give greater weight to observations with lower variance. The
advantage of GLS is that it adjusts the coefficients, making use of information about the differences in
the variance of the error terms. The disadvantage is that it requires good knowledge of how the variance
varies across observations, which can be difficult to obtain. A detailed description of GLS regression is,
however, beyond the scope of this book. Interested readers may consult Greene (2018) and Woolridge
(2016).



13.6 ENDOGENEITY
It is true that “correlation does not imply causation,” but with careful use of data and methods,
regression analysis can imply causality. The challenge is to ensure that the independent variables are
exogenous. In statistical terms, independent variables are exogenous if they are uncorrelated with the
error term (ε). If any of the independent variables are correlated with the error term, the model has an
endogeneity problem. With endogeneity, the OLS coefficients are biased and may also be inconsistent,
in that, as the sample size increases, the estimated coefficient will not converge toward the true value of
the coefficient.

Under what conditions would an independent variable be correlated with the error terms? There are at
least two situations where this may occur5.

The independent variable is influenced by the dependent variable. This is called reverse causation.

The independent variable and the dependent variable are both affected by a variable that has been
omitted from the model. The omitted variable is sometimes called a confounding factor.

Endogeneity is a serious problem in the use of regression analysis, particularly in the social sciences
and other fields where it is difficult to run a controlled experiment. In our car price regression model, we
can be fairly confident that fuel type, mileage, and age of the car are not influenced by the price
because these characteristics predate the setting of the price. Thus, reverse causation is not likely to be
an issue in our model. But there may be omitted variables that are correlated with both the dependent
variable and one or more independent variables. For example, suppose hybrid car owners keep their
cars cleaner or better maintained than gas or electric car owners. If cleanliness improves the resale
value of a car, then the hybrid dummy coefficient will be biased upward because it captures the effect of
being a hybrid and the effect of being cleaner or better maintained than average.

And consider the case of a study estimating the effect of the size of the police force on the crime rate
(see Levitt, 1997). The research question is, “Does hiring more police officers reduce the crime rate?” If
we ignore the endogeneity and use OLS regression to estimate the crime rate per 1,000 inhabitants (y)
as a function of the size of the police force per 1,000 inhabitants (x) and other factors, we may get a
positive coefficient. But clearly, we cannot conclude that expanding the police force increases the crime
rate. The more likely explanation is that when the crime rate increases, local governments respond by
increasing the size of their police force. In other words, the crime rates (y) can influence the size of the
police force (x), an example of reverse causation. This demonstrates the point that endogeneity can
generate biased coefficients, even changing the sign of the coefficient.

There are several techniques for addressing endogeneity that involve advanced methods. A detailed
description is beyond the scope of this book, but we provide a brief introduction to some of these
methods in Chapter 15.

13.7 NONNORMALITY
Normally distributed error terms are sometimes considered an “optional” assumption for OLS
regression. This is because normality is not necessary for OLS, but it is convenient. It is not necessary
in that, even without normally distributed errors, OLS will still generate the best linear unbiased
estimates (BLUE) of the coefficients. On the other hand, normality is convenient in that it ensures that
the estimated coefficients are normally distributed so that the p values and confidence interval will be
correct even in small samples.



However, even if the error terms are not normally distributed, the estimated coefficients may still be
normally distributed. Because OLS coefficients can be interpreted as a type of weighted average, the
central limit theorem tells us that the distribution of the estimated coefficients (ˆβ

i

) becomes more normal
as the sample size increases, even if the error term (ε) is not normally distributed. As few as 100
observations may be sufficient to ensure that the OLS coefficients are normally distributed, implying that
the standard p values and confidence intervals are reliable. Thus, the problem of normality is not a
serious problem for regression analysis unless the sample is quite small (Bailey, 2016).

How do we visually inspect the normality of residuals? As described in Section 13.2, we can use the
predict command to calculate the residual for each observation (that is, each car in the database) and
give it the variable name e. We can then compare the distribution of the residual and the normal
distribution using a histogram, as described in Chapter 6.

lab var e Residuals 
histogram e, normal width(1000) xlabel(-20000(10000)70000)

The normal option adds a line showing the normal distribution with the same mean and standard
deviation. The width option tells Stata how wide to make each bar, while the xlabels option indicates
where to start and end the labels and what interval to use.

The histogram in Figure 13.14 shows that the distribution of the residuals diverges from the normal
distribution. There are too many residuals between −10,000 and 0 and too few between 0 and 20,000.

Figure 13.14 Histogram of Residuals and the Normal Distribution

We can measure the divergence from normality by calculating skewness and kurtosis. Skewness is
generally considered a measure of symmetry, but this is not always the case. All symmetric distributions
have a skewness of zero, but a skewness of zero does not guarantee that the distribution is symmetric.
For example, a distribution may have zero skewness and still be asymmetric if the left tail of the
distribution is thick and the right tail is long.

Kurtosis generally measures the presence of thick tails. The normal distribution has a kurtosis value of
3, so excess kurtosis is defined as kurtosis minus 3. In other words, positive excess kurtosis implies that
the tails are thicker than in the normal distribution, while negative excess kurtosis means the tails are



thinner than in the normal distribution. Table 13.1 provides some guidance in interpreting skewness and
kurtosis.

 Skewness Kurtosis
Range –∞ to + ∞ 1 to +∞
Value in the
normal
distribution

0 3

Interpretation
of low values

Negative skewness means the distribution is
skewed to the left. In other words, the left tail
is longer or thicker.

Kurtosis less than 3 means a higher
peak and smaller tails than a normal
distribution.

Interpretation
of high
values

Positive skewness means the distribution is
skewed to the right. In other words, the right
tail is longer or thicker.

Kurtosis greater than 3 means a
flatter distribution and larger tails than
a normal distribution.

In Stata, the command sum e, detail will calculate skewness, kurtosis, and many other statistics for the
variable e. Alternatively, we can use the tabstat command to calculate these two statistics alone.

As shown in Figure 13.15, the skewness of the residual from the car price regression is 2.17, indicating
that it has a positive skew. A skewness value between −2 and 2 is considered acceptable for normality,
and our result is slightly outside this range. The kurtosis of the residual is 10.75, indicating that the tails
are thicker or longer than in a normal distribution. This is particularly evident on the right side of the
distribution.

Figure 13.15 Skewness and Kurtosis

Is the distribution of the residual significantly different from normal? In Stata, the skewness–kurtosis test
(sometimes called the D’Agostino K2 test) checks skewness and kurtosis separately, then runs a joint
test of the null hypothesis that skewness = 0 and kurtosis = 3, which would be consistent with normality.



Using the car price data, we can run the test using the menu system or using a command. To use the
menu system, we follow this sequence: Statistics → Summaries, tables, and tests → Distributional plots
and tests → Skewness and kurtosis normality test, and then select the variable representing the
residual. Alternatively, we can use the command sktest. The command and results are shown in Figure
13.16.

Figure 13.16 Test for Normality

The number under “Pr(skewness)” is the probability of getting the observed distribution of the residual if
the skewness were actually zero, while the number under “Pr(kurtosis)” indicates the probability of
getting this result if the kurtosis were 3. Both null hypotheses can be rejected at the 1% level. Naturally,
the joint hypothesis that skewness = 0 and kurtosis = 3 is also rejected at the 1% level. In summary, the
test rejects the null hypothesis that the residuals from the car price regression are normally distributed.

How do we address the problem of nonnormality in the residuals? The most common approach is to try
transforming the dependent variable. For example, some variables, such as household income,
individual health care spending, and population data, have many small, positive values and a few very
large values. In statistical terms, these variables are positively skewed. However, if we transform the
variable by taking the natural logarithm, the new variable is often much closer to a normal distribution.
This makes it more likely that residuals from a regression model will be normally distributed, particularly
if the independent variables are normally distributed.

We can take the example of the population of counties in the United States. The kdensity command
gives us a “smoothed” histogram of a variable. The left side of Figure 13.17 shows the distribution of the
3,144 counties by population in 2022. Most counties have a population of less than 25,000, but a few
have more than 1 million inhabitants. The right side of Figure 13.6 shows the distribution of the natural
logarithm of county population, which is clearly more similar to a normal distribution. The output of the
tabstat command (not shown) indicates that the skewness is 12.8 for the original county population but
0.26 for the logarithm of population. Recall that the skewness of the normal distribution is zero.
Likewise, kurtosis is 277 in the original population and 3.35 in the log population. Kurtosis is 3.0 in the
normal distribution. Thus, the natural logarithm of the population variable is much closer to normal than
the original variable. The commands to generate these results are shown below:

Description



Figure 13.17 Distribution of County Population and the Logarithm of County Population

kdensity population 
gen logpop = log(population) 
kdensity logpop 
tabstat population logpop, s(skewness kurtosis)

Transforming the dependent variable so that it is normally distributed (or closer to a normal distribution)
improves the chances that the residuals will be normally distributed. This is particularly important when
the sample is small.

In the case of our car price regression model, we can calculate the logarithm of price and run the new
version of the analysis as follows:

gen lnprice = log(price) 
regress lnprice mileage age new hybrid electric

Calculating the skewness and kurtosis using the tabstat command (not shown) confirms that this
transformation was successful in reducing the skewness from 2.17 to 0.68 and reducing the kurtosis
from 10.75 to 4.27, suggesting a distribution much closer to normal. However, the sktest still rejects
the null hypothesis that skewness is zero and kurtosis is 3, as well as the null hypothesis of normality.

If transforming the dependent variable is not successful in producing normally distributed residuals,
some researchers suggest setting a stricter criterion for statistical significance of the coefficients. For
example, one might insist on a p value of less than 1% to conclude that the coefficient is significantly
different from zero. There are also regression models that give less weight to the outliers, including
robust regression (implemented with rreg in Stata) and quantile regression (implemented with qreg).
However, these methods are beyond the scope of this book.

As mentioned previously, in the absence of other problems, even if the errors are not normally
distributed, OLS still gives the best linear unbiased estimates (BLUE) of the coefficients. Furthermore,
unless the number of observations is small, the coefficients are likely to be normally distributed if even
the errors are not normally distributed. Given that we have more than 900 observations, OLS will
generate reliable p values and confidence intervals regardless of the distribution of the error terms.

13.8 PRESENTING THE RESULTS
In this section, we normally give examples of how to write results for a nontechnical publication (e.g., a
newspaper) and for a technical publication (e.g., an academic journal). However, newspapers and other
nontechnical publications rarely describe regression diagnostics, so for this chapter, we will only provide
the example of how to describe the results for a journal or other technical publication.

For a journal article, the write-up should include a description of the results of each test, expressed in
terms of rejecting or failing to reject the null hypothesis. The value of the test statistic and the p value
can be included in parentheses. Thus, the regression diagnostics for the car price regression could be
described as follows:

This model was subjected to various diagnostic tests. First, we ran the Ramsey RESET test of
omitted variables using powers of the dependent variable. In an earlier version of the model,
the test failed to reject the null hypothesis that there were no omitted variables. To address this
issue, we added variables representing the age of the car, age squared, and a term for



interaction between age and the car using alternate fuel. The interaction term was not
statistically significant, so it was not included. The age and age squared variables were
significant (p < 0.000 for both). However, even after adding these explanatory variables, the
RESET test still rejected the null hypothesis of no omitted variables, F(3, 892) = 24.82, p <
0.000. To the extent that the missing variables are correlated with included variables, the
coefficients on the latter may be biased.

Heteroscedasticity was checked using the Breusch–Pagan/Cook–Weisberg test. It failed to
reject the null hypothesis of homoscedasticity when modeling the variance of the errors as a
function of the predicted values of price, χ2(1) = 61.00, p < 0.000. OLS estimates of the
coefficients are not biased by heteroscedasticity, but the standard errors of the estimates may
be misleading.

We tested for multicollinearity by calculating the variance inflation factors (VIFs) for all the
independent variables. The only variables to show VIF values above 3 were age and age
squared. Since the coefficients on these variables were statistically significant and
multicollinearity does not result in biased coefficients or biased standard errors, we retained
both variables in the model.

The D’Agostino K2 test rejected the null hypothesis that the residuals were normally distributed,
adjusted χ2(2) = 336.52, p < 0.0000. When the residuals are not normally distributed, caution
must be taken in assigning statistical significance when p values are marginal. Fortunately, all
six coefficients in our model have low p values (<0.01), providing reassurance that the
coefficients are likely different from zero.

13.9 SUMMARY OF COMMANDS USED IN THIS CHAPTER
As described in Chapter 4, this last section of each chapter summarizes all the Stata code used in the
chapter (Table 13.2). In addition, all Stata code used throughout the book is summarized in Appendix 1.



Function Stata command(s)
Add random error to a variable gen mileage_err = mileage +

rnormal(0,18000)
Looking for outliers in the residuals

predict e, resid

sum e, detail

Using Cook’s D to look for outliers
predict CooksD, cooksd

browse if CooksD>1 & CooksD!=.



Function Stata command(s)
Adding age and age squared independent variables to a
regression gen age = 2023 – year

gen age2 = age^2

Plot residuals against an independent variable to check for
specification error

rvpplot mileage

Plot residuals against predicted dependent variable to check
for specification error

rvfplot

Omitted variable test based on powers of predicted dependent
variable

estat ovtest

Omitted variable test based on powers of the explanatory
variables

estat ovtest, rhs

Calculate interaction terms for regression analysis gen age_alt = age*(hybrid+electric)
Generate matrix of correlation coefficients correl age age2 mileage new

hybrid electric
Run variance inflation factor test of multicollinearity estat vif
Plot regression residuals against an explanatory variable to
check for heteroscedasticity

rvpplot mileage

Plot regression residuals against the predicted values of the
dependent variable to check for heteroscedasticity

ryfplot

Run the Breusch–Pagan and Cook–Weisberg tests for
heteroscedasticity

estat hettest

Generate histogram of residual to check for normality
predict e, resid

histogram e, normal width(1000)
xlabel(−20000(10000)70000)

Calculate skewness and kurtosis as part of checking for
normality of residual

tabstat e, s(skew kurt)

Test for skewness, kurtosis, and normality in the residual sktest e
Compare the skewness and kurtosis of two variables tabstat population logpop, s(skew

kurt)

EXERCISES
1. Match the issue on the left side with the correct problem(s) that it causes with OLS regression on

the correct definition on the right side (Table 13.3).



1. Measurement error in
the independent variable

a. This does not create bias in the coefficient or in the
standard error, but the standard errors may be large,
making the coefficient statistically insignificant.

2. Omitted variable that is
correlated with an
included independent
variable

b. The model is still the best linear unbiased estimate, but
p-values associated with the standard errors are incorrect.

3. Heteroscedasticity c. The coefficient on the affected variable will be biased
toward zero.

4. Endogeneity due to
reverse causality

d. The coefficient is not biased, but the standard errors
are incorrect and the model is inefficient in that it does not
use all available information.

5. Nonnormality of the
error terms

e. The coefficient on the correlated independent variable
is biased.



6. Multicollinearity f. Biased coefficient on the affected independent variable

2. Suppose you run a regression model, but you suspect there may be heteroscedasticity.
a. What graph would you create to check for heteroscedastity?
b. What test would you run to check for heteroscedasticity?
c. If the test indicates that there is heteroscedasticity, what are two strategies you could use to

remedy this problem?
3. In the exercises for Chapter 12, we estimated income (realinc) as a function of age, education, and

a dummy variable for female respondents. The coefficient on age was not statistically significant.
a. What type of graph would you use to check for possible nonlinear effect of age on income?

What Stata command would generate this graph?
b. Use gen to create a new variable, age2, which is equal to age squared, and add this new

variable to the model of real income. Is age2 a statistically significant variable? Has the
statistical significance of age changed? Why, or why not?

c. How would you interpret the coefficients on the age and age2 variables?
d. Given that the derivative of a quadratic equation is dy/dx = β1 + 2 × β2 × x, how would you use

the age coefficients to calculate the age where income peaks, according to this regression
model.

4. Let’s return to the model of income as a function of age, education, and a dummy for female
respondents.

a. Create a variable e representing the residuals, and test the residual for nonnormality. What is
the result of this test? Do you accept or reject the null hypothesis of normality?

b. If the test rejects the null hypothesis of normality, with what remedies could you try to address
this problem?

5. Suppose you suspect that education has a different effect on men and women. Calculate an
interaction term for education and female, and use it in the regression analysis.

a. What is the coefficient and t statistic on the interaction term?
b. How would you interpret this result?

KEY TERMS

autocorrelation

Breusch–Pagan/Cook–Weisberg test

endogeneity

F test

heteroscedasticity

homoscedasticity

kurtosis

measurement error

multicollinearity

nonnormality

skewness



specification error

Descriptions of Images and Figures
Back to Figure

The x-axis ranges from 0 to 200,000 for Mileage, and the y-axis ranges from −20,000 to 70,000 for
Residuals. Points follow a horizontal pattern, mostly within the Residuals range of −20,000 to 20,000
and the Mileage range of 0 to 150,000, with a concentration below 100,000 miles.

Back to Figure

The output is as follows:

. estat ovtest

Ramsey RESET test for omitted variables

Omitted: Powers of fitted values of price

Hθ: Model has no omitted variables

F(3, 894) = 11.04

Prob > F = 0.0000

Back to Figure

The table includes:

Key statistics:

Number of observations (obs): 902

F-statistic (F(6, 895)): 155.91

Prob > F: 0.0000

R-squared: 0.5111

Adjusted R-squared: 0.5075

Root MSE: 10188

ANOVA Table:

Model Sum of Squares (SS): 9.7106e+10

Residual SS: 9.2904e+10

Total SS: 1.9001e+11

Degrees of freedom (df): 6 for the model, 895 for residuals

Coefficients table:

Mileage: Coefficient = -0.0444093 (negative impact on price), statistically significant (p-value = 0.002).



Age: Coefficient = -2435.388 (negative impact on price), p-value = 0.000.

Age squared (age2): Coefficient = 50.75703 (positive impact), p-value = 0.000.

New: Coefficient = 4863.531 (positive impact), p-value = 0.000.

Hybrid: Coefficient = 3994.28 (positive impact), p-value = 0.007.

Electric: Coefficient = 9075.87 (positive impact), p-value = 0.000.

Constant (_cons): Coefficient = 36346.64, p-value = 0.000.

Back to Figure

The table includes:

Key statistics:

Number of observations (obs): 902

F-statistic (F(7, 894)): 134.18

Prob > F: 0.0000

R-squared: 0.5124

Adjusted R-squared: 0.5078

Root MSE: 10181

ANOVA Table:

Model Sum of Squares (SS): 9.7352e+10

Residual SS: 9.2658e+10

Total SS: 1.9001e+11

Degrees of freedom (df): 7 for the model, 894 for residuals

Coefficients table:

Mileage: Coefficient = −0.042177 (negative impact on price), statistically significant (p-value = 0.003).

Mile_alt: Coefficient = −0.047512 (negative impact on price), p-value = 0.003.

Age: Coefficient = -2418.973 (negative impact), p-value = 0.124.

age2: Coefficient = 50.37 (positive impact), p-value = 0.000.

New: Coefficient = 4661.284 (positive impact), p-value = 0.000.

Hybrid: Coefficient = 5725.58 (positive impact), p-value = 0.002.

Electric: Coefficient = 9572.561 (positive impact), p-value = 0.000.

Constant (_cons): Coefficient = 36223.6, p-value = 0.000.



Back to Figure

The matrix displays pairwise correlations between these variables.

Mileage: Correlation of 1.0000 with itself, 0.6673 with age, 0.2859 with age2, -0.5353 with new, -0.0093
with hybrid, and -0.1897 with electric.

Age: Correlation of 1.0000 with itself, 0.8330 with age2, -0.4878 with new, -0.0205 with hybrid, and
-0.1564 with electric.

Age2: Correlation of 1.0000 with itself, -0.1665 with new, -0.0070 with hybrid, and -0.0603 with electric.

New: Correlation of 1.0000 with itself, 0.1062 with hybrid, and 0.2594 with electric.

Hybrid: Correlation of 1.0000 with itself and -0.0558 with electric.

Electric: Correlation of 1.0000 with itself.

Back to Figure

The output is as follows:

. estat vif

Variable VIF 1/VIF
age 11.04 0.090548
Age2 6.84 0.146159
mileage 2.90 0.345096
new 1.70 0.58885
electric 1.10 0.910280
hybrid 1.05 0.954866
Mean VIF 4.10  

Back to Figure

The x-axis represents Fitted values, ranging from 0 to 50,000, while the y-axis represents Residuals,
ranging from -20,000 to 60,000. The points form a distinct V-shaped pattern, spreading out from left to
right. Most of the points are concentrated between Fitted values of 10,000 to 30,000 and Residuals from
-20,000 to 18,000.

Back to Figure

The output is as follows:

. estat hettest

Breusch-Pagan/Cook-Weisberg test for heteroscedasticity

Assumption: Normal error terms

Variable: Fitted values of price

Hθ: Constant variance

Chi2(1) = 61.00



Prob > chi2 = 0.0000

Back to Figure

On the left graph:

The x-axis represents “US county population (2022)” with a range from 0 to 10,000,000.

The y-axis represents Density, ranging from 0 to 4.000e-06.

An L-shaped curve shows a decreasing trend, starting with a density of 4.000e-06 and approaching 0
around 10,000,000 population, then remaining constant.

The text below the graph reads “kernel = epanechnikov, bandwidth = 7.8e+03.”

On the right graph:

The x-axis represents “Log of US county population (2022)” with a range from 0 to 15.

The y-axis represents Density, ranging from 0 to 0.3.

A bell-shaped curve peaks at a value of 10 with a density of 0.3.

The text below the graph reads “Log of US county population (2022).”



14 REGRESSION ANALYSIS WITH BINARY
DEPENDENT VARIABLES



CHAPTER PREVIEW

Steps Examples
Research
question

Do views on climate change vary by age and education?

Null
hypothesis

Age and education have no effect on views on climate change.

Test Logit or probit analysis and z test of coefficients on age and education
Types of
variables

Dependent variable is binary (accept or reject human-caused climate
change). Independent variables can include continuous variables,
categorical variables, or a mix of both.

When to use When dependent variable is binary (0 or 1)
Assumptions

For the logit model: The log odds is a linear function of the independent
variables.

For the probit model: The probability that y = 1 is a cumulative normal
density function of the independent variables.

Stata code:
generic logit depvar indepvars

probit depvar indepvars



Steps Examples
Stata code:
example logit humcaus age female educ

probit humcaus age female educ

14.1 INTRODUCTION
Chapter 12 introduced regression analysis, which estimates the equation that best describes the
relationship between a dependent variable and one or more independent variables. We focused on
ordinary least squares (OLS) regression, in which the dependent variable is continuous and the model is
linear in the parameters. However, in many cases, we want to estimate a relationship in which the
dependent variable is binary (yes/no) rather than continuous. Suppose we want to predict whether a
household will purchase a car this year, whether an adult is working, whether a student will graduate
from high school, or whether a patient will survive surgery. This chapter explains how to apply
regression analysis to these types of problems. In particular, we focus on two types of regression
analysis used on binary variables: logit1 and probit regression.

Let’s take a concrete example. The 2021 General Social Survey found that 16% of Americans believe
that the climate has not been changing or that the change is mostly due to natural causes. Another 36%
say that climate change is about equally caused by natural processes and human activity. And the
remaining 48% believe that climate change is mostly caused by human activity.

Suppose we want to dig deeper and analyze the factors associated with belief that climate change is
mostly caused by human activity? In a logit regression model, the dependent variable (y) takes just
two possible values, “no” and “yes,” which we represent mathematically as 0 and 1. Although the
observed values of y are either 0 or 1, the predicted value of y is a number between 0 and 1, which is
interpreted as the probability that y = 1 given the values of the independent variables. In our example,
regression analysis would generate an equation that predicts the probability that a person with certain
characteristics (e.g., a 32-year-old college-educated female) will believe in that climate change is mostly
caused by human activity. It would also allow us to test the statistical significance of each independent
variable.

This chapter begins by demonstrating the relevance of this type of analysis, describing research
questions from various fields where the dependent variable is binary. Then, we discuss the use of a
linear OLS model to analyze data with a binary dependent variable. This leads to a more extended
discussion of the logit model, including the functional form, the method used to find the solution, and the
interpretation of the coefficients. We also briefly consider the closely related probit model and how it
differs from the logit model.

Regression models can also handle categorical dependent variables with more than two values, such as
political party affiliation or marital status. This topic is covered in Chapter 15. A more in-depth
description of regression analysis for binary and categorical dependent variables can be found in Long
and Freese (2006) and Greene (2018).

14.2 WHEN TO USE LOGIT OR PROBIT ANALYSIS
Table 14.1 shows examples of research questions from different fields where the dependent variable is
binary. Each row gives a research question, the corresponding null hypothesis, the binary dependent
variable, and one or more independent variables. The table demonstrates that binary dependent



variables are common in empirical research, highlighting the importance of statistical tools for analyzing
data of this type.

Field Research Question Null Hypothesis
Binary
Dependent
Variable

Independent
Variables

Criminal
justice

Does job counseling
reduce the probability of
ex-convicts being
arrested within a year of
release?

Job counseling has
no effect on the
rearrest rate.

Whether or
not an ex-
convict is
rearrested
within a year
of release

Job counseling and
personal
characteristics

Economics Is the likelihood of being
employed affected by the
level of education?

Level of education
has no effect on the
probability of being
employed.

Whether or
not an
individual is
employed

Level of education
and other individual
and community
characteristics



Field Research Question Null Hypothesis
Binary
Dependent
Variable

Independent
Variables

Political
science

Are voters who live near a
polling station more likely
to vote?

Distance to polling
station has no effect
on probability of
voting.

Whether or
not an
individual
voted in a
recent
election

Distance to polling
station and other
voter characteristics

Psychology What factors affect an
individual’s likelihood of
completing a 4-week
therapy session?

Personal
characteristics do
not affect likelihood
of completing
therapy session.

Whether or
not patients
complete the
therapy
session

Age, sex, education,
and other personal
characteristics

Public
health

How does the proportion
of children vaccinated in a
county affect the
likelihood of a whooping
cough outbreak over 1
year?

Proportion of
children vaccinated
has no effect on the
probability of a
whooping cough
outbreak.

Whether or
not there is a
whooping
cough
outbreak in
the county

Proportion of children
vaccinated,
demographic
characteristics, and
indicators of access
to health care

Sociology Is the decision to attend
church affected by
attendance by neighbors?

Church attendance
is not affected by
attendance by one’s
neighbors.

Whether or
not a person
attends
church
regularly

Church attendance
by neighbors and
other personal and
social factors

One option is to simply apply the linear OLS model described in Chapters 12 and 13 to the case where
the dependent variable is binary. This is called the linear probability model (LPM). Perhaps the main
advantage of the LPM is that it is easy to interpret the coefficient(s). Each coefficient in the LPM
represents the effect of a one-unit increase in the corresponding independent variable on the probability
that y = 1. Thus, if β = 0.02, then each one-unit increase in the independent variable is associated with a
0.02 or 2 percentage point increase in the probability that y = 1.

The main disadvantage of the LPM is that it will generate predicted values of the dependent variable
that are less than 0 or greater than 1 over some ranges of x, which are not valid as probabilities. To
demonstrate this, Figure 14.1 shows 20 observations, where x takes the values between 1 and 20 and y
is either 0 or 1. The LPM model generates the straight line that best fits the data, which is also shown in
the figure. On the left of the graph, the LPM-predicted value of y dips below 0, while on the right, it rises
above 1. In other words, the LPM model is predicting probabilities outside the 0-to-1 range.



Figure 14.1 Linear Probability Model and Logit Model

On the other hand, if we apply a logit model to the same data, the predicted value of y is a curved line
that remains greater than 0 and less than 1 throughout the range of x (Figure 14.1). This is only possible
because the relationship between the predicted probability (P) and independent variable (x) is nonlinear.
This means that the marginal effect (the slope on the graph) varies across observations. However, as
discussed in Section 14.5, Stata can be used to calculate the marginal effects of each independent
variable on the predicted probability in a logit model.

14.3 UNDERSTANDING THE LOGIT MODEL
The logit model is based on the concept of the odds, defined as the probability of an event occurring (P)
divided by the probability of the event not occurring. Mathematically, we can express odds as follows:

(14.1)

Odds =

P

1 − P

Odds are commonly used to describe payoffs in sports gambling, but they also reflect the perceived
probability of winning. For example, if a racetrack offers 3-to-1 odds on a horse, this means they will pay
out three times the value of the bet if the horse wins. This implies that the perceived probability that the
horse will lose is three times greater than the perceived probability that it will win.2 In other words, the
horse has a 3/(3 + 1) = 0.75 = 75% probability of losing and a 25% probability of winning.

The logit regression model expresses the natural logarithm of the odds (sometimes called the log odds)
as a linear function of a constant and a set of independent variables:



(14.2)

In(

P

1 − P

) = β

0

+

k−1

∑

i=1

β

i

x

i

This equation can be rewritten in terms of P as follows:

(14.3)
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Because the logit regression model is nonlinear, it cannot be estimated using ordinary least squares
(OLS). OLS involves a set of calculations using matrix algebra that will always generate the estimated
coefficients and related statistics. In contrast, running a logit model involves maximum likelihood
estimation (MLE), which uses an iterative search process to find the set of coefficients that maximizes
the probability of generating the observed data. Fortunately, the calculations behind the search
procedure are carried out by Stata.

Because the search procedure is computationally intensive, it takes somewhat more time to run a logit
model than an OLS model. In addition, the procedure will occasionally fail to converge, meaning that it
cannot “find” a set of coefficients that is better than other sets of coefficients. In graphic terms, this
means that the likelihood function is “flat” over some range of coefficient estimates, making it impossible
to identify a point of maximum likelihood.

The logit model relies on a set of assumptions similar to those behind OLS regression. Below are some
of the more important ones:

The dependent variable takes just two possible values (0, 1).

The independent variables are measured without error.

The log odds of the event (y = 1) are a linear function of the independent variables.

The model includes all relevant variables.

There is no correlation between the independent variables and the error term.



14.4 RUNNING A LOGIT MODEL
Figure 14.1 demonstrates logit regression using a small hypothetical example. Now let’s consider a
larger, more complex, and concrete example from the 2021 General Social Survey (GSS). One of the
questions asked by the GSS was this:

There has been a lot of discussion about the world’s climate and the idea it has been changing in recent
decades. Which of the following statements comes closest to your opinion?

1. Has not been changing.
2. Has been changing mostly due to natural processes.
3. Has been changing about equally due to natural processes and human activity.
4. Has been changing mostly due to human activity.

The results are found in the variable “clmtcaus.” Suppose we are interested in the factors associated
with giving the fourth response: “Has been changing mostly due to human activity.” We can use the
recode command to create a new binary variable “humcaus” equal to 1 if the respondent gives the
fourth answer and 0 otherwise. Then we can recode the sex variable (1=male, 2=female) to represent a
dummy variable for female respondents (0=male, 1=female). Finally, we can use logit command to see
whether believing in human-caused climate change is associated with sex, age, or education. Using the
menu system, we can run a logit model using the following: Statistics → Binary outcomes → Logistic
regression, then select the dependent and independent variables. The Stata command is logit
humcaus female age educ. Figure 14.2 shows the commands along with the output.

Figure 14.2 Logit Model of Belief in Human-Caused Climate Change

The results indicate that the coefficient on age is negative and statistically significant, the coefficient on
the female dummy variable is not statistically significant, and the coefficient on education is positive and
statistically significant. In other words, belief that climate change is mainly caused by human activity is
more common among young people and among people with more education, but men and women hold
similar beliefs.



14.5 INTERPRETING THE RESULTS OF A LOGIT MODEL
How do we interpret the coefficients? With an OLS model, each coefficient represents the slope of the
line—that is, the change in the dependent variable associated with a one-unit increase in the
independent variable. But the logit function is nonlinear, so the slope changes depending on the value of
the independent variable(s). One option is to calculate the marginal effect of an independent variable as
β(1 − P)P, where β is the coefficient on that independent variable and P is the predicted probability that
y = 1. From this equation, we know that the marginal effect is close to 0 when P is close to 0 or close to
1. The maximum value of P(1 − P) is when P = 0.5, so the largest marginal effect is βi(0.5)(1 − 0.5)=
βi(0.25).

Alternatively (and more easily), we can have Stata calculate the marginal effect for us. If we want to
calculate the average marginal effects of the education variable, for example, we use the command
margins, dydx(educ). As shown in Figure 14.3, the result is 0.02917, meaning that on average, each
additional year of education is associated with roughly a 3 percentage point increase in the probability
the respondent will agree that climate change is mainly caused by human activity.

Figure 14.3 Marginal Effects and Prediction for a Logit Model

The margins command without dydx option will give the average predicted probability for different
values of an explanatory variable. For example, the command

margins, at(educ=10)



will give the average probability for respondents with 10 years of education. Similarly, the command

margins, at(educ=(10(5)20))

will produce a small table with the average probability for respondents with 10, 15, and 20 years of
education (see Figure 14.3).

It is important to keep in mind several limitations of logit and probit models. First, these models are
relatively sensitive to heteroscedasticity. In OLS regression, heteroscedasticity does not result in biased
coefficients, but with probit and logit, it can cause the estimated coefficients to be biased.

Second, because logit models are estimated with an iterative search process, they require larger
samples to achieve the same level of accuracy in estimating coefficients. A common rule of thumb is
that the sample size should be at least 10k/p, where k is the number of independent variables and p is
the probability of the less likely outcome of the dependent variable. For example, if we have six
independent variables and the dependent variable is zero 90% of the time, the sample size should be at
least 10 × 6 / 0.1 = 600 (Peduzzi, Concato, Kemper, Holford, & Feinstein, 1996).

Finally, probit and logit models have a “zero cell” problem. Each 2 × 2 cross tabulation between the
(binary) dependent variable and an independent dummy variable must have observations in all four cells
of the table. Otherwise, the model cannot be estimated.

14.6 LOGIT VERSUS PROBIT REGRESSION MODELS
Another option for carrying out regression analysis with a binary dependent variable is the probit model,
which uses the command probit. It is similar to the logit model in that both describe a function that looks
like an elongated S and whose value always remains between 0 and 1. The probit function is different
from the logit function: Instead of being based on the log odds, it is based on the cumulative normal
probability function, denoted by Φ():

(14.4)
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Although the equations for logit and probit look quite different, in practice, the results are almost
identical. Figure 14.4 combines the logit estimation from Figure 14.1 with a probit estimation using the
same data. The predicted values of y (probabilities) are virtually the same.



Figure 14.4 Comparison of Probit and Logit Models

Because of the similarity of results, it is not worth devoting time to determining which model gives a
“better” fit. The logit model used to have an advantage because it is computationally simpler, but
modern computers make this difference moot. In fields that are familiar with odds ratios, such as health
and nutrition, the logit function is more common. In other fields, such as economics and political science,
the probit model is the default model for regression analysis with binary dependent variables.

14.7 PRESENTING THE RESULTS
As discussed in Chapter 12, the write-up should focus on not only the statistical significance of the
independent variables but also the size of the effect. It is possible to have a variable whose effect is
statistically significant at the usual levels of confidence but too small to make much difference in
practice. This is particularly true when analyzing databases with a large number of observations.

For a general audience, it is not necessary to provide a table of the regression results. Instead, we focus
on the sign of the statistically significant results. Describing the marginal effects of the independent
variables is optional. The results of the logit model could be summarized as follows:

What factors are associated with believing that human activity is the main cause of climate
change in the United States? The results of the 2021 General Social Survey provide some
answers. Overall, about half (48%) of respondents believe that human activity is the main
cause of climate change. This belief is more common among younger people and those with
more education. However, there is no significant difference between men and women in their
views on the cause of climate change.

For an academic journal or a technical audience, more detail on the methods and results should be
provided. Each field and each journal has different guidelines regarding the presentation of coefficients,
p-values, and/or confidence intervals. Here is an example:

We used the 2021 General Social Survey to explore the socioeconomic correlates of views on
climate change. We use a logit model and data from 1,668 respondents to estimate the effect



of age, gender, and education on the belief that human activity is the main cause of climate
change. The results indicate that age has a negative and statistically significant effect on belief
in human-caused climate change. On average, each additional year of age is associated with a
reduction of 0.00397 in the probability (p < 0.000). On the other hand, education is positively
and significantly related to belief in human-caused climate change, with each additional year of
education being associated with a 0.0292 increase in the probability (p < 0.000). On the other
hand, there is no statistically significant difference between men and women in the belief that
human activity is the main cause of climate change (p = 0.150).

An academic article will also include a table showing the results of the regression analysis. As discussed
in Chapter 12, the results of any regression analysis can be exported using the etable command. This
command allows you to export the results of the most recent regression model to Word, Excel, LaTeX,
or other file types. You can also use the command to specify the font, format, and layout of the results.

Figure 14.5 gives an example of an etable command along with some common options. The first four
commands assign labels to the variables so the table will be easier for readers to understand. The
etable command is spread over four lines; the “///” notation indicates that the command continues on
the next line. The indentation is optional but helps make the code more readable. The export option is
used to specify the title and format of the file to be created, and replace tells Stata to delete any
previous content of the file. The title and note options allow the user to specify the title of the table and
a footnote, respectively. The showstars option indicates that the output should use asterisks to identify
the level of statistical significance of each independent variable. By convention, one asterisk is used to
indicate p < 0.10, two asterisks are for p < 0.05, and three asterisks for p < 0.01. The showstarsnote
adds a footnote to explain the meaning of the asterisks, and col(dvlabel) says that the column heading
should include the label of the dependent variable (“Human-caused climate change”). Otherwise, the
column heading will show the (rather uninformative) variable name “humcaus.”

Figure 14.5 Exporting Regression Results

Figure 14.6 shows the contents of the Word file generated by the etable command. In this case, the
output file gives the results from just one regression model, but the etable command allows users to
include the results of multiple models, with the results of each model appearing in a separate column.
This is often done in journal articles to compare the results of closely related models, such as models
that include different sets of independent variables.



Figure 14.6 Output Of Logit Regression in Word Format

14.8 SUMMARY OF COMMANDS USED IN THIS CHAPTER
This last section summarizes all the Stata code used in the chapter (Table 14.2). In addition, all Stata
code used throughout the book is summarized in Appendix 1.

Function Stata
command(s)

Estimate a logit regression model logit y x
Estimate a probit regression model probit y x
Generate predicted values after regression predict yhat



Function Stata
command(s)

Graph y and x data with OLS estimate values and logit estimated values
twoway
(scatter y x)
(line y_OLS x)
///

(line y_Logit x)

After non-linear regression, calculate the average marginal effect of an x variable margins,
dydx(educ)

After a non-linear regression, give the predicted value of y for a value of x margins,
at(educ=10)

After a non-linear regression, give the predicted value of y for selected values of x margins,
at(educ=
(10(5)20))

Export regression results to a Word file, give it a title and footnote, include asterisks
for significant coefficients, add a footnote explaining the asterisks, and use the
variable label as a column heading

etable,
title(Logit
model of…) ///

note(Source:
Analysis of…)
///

export(Logit
model.docx,
replace) ///

showstars
showstarsnote
col(dvlabel)

EXERCISES
1. As the cost of college tuition rises, many politicians have called for tuition assistance for low-income

students to level the playing field. Others have recommended that all community colleges should be
free for anyone who wants to attend. On the flip side, some politicians argue against free college
and have even called for a tax on tuition waivers and a reduction in state funding of public colleges.
Using the 2021 GSS, we can explore the characteristics of those who support financial aid for
college students.

a. In the GSS2021 data set, one statement is, “The government should give financial assistance
to college students from low-income families, even if it might require a tax increase to pay for
it.” There were five possible responses: strongly agree, agree, neither agree nor disagree,
disagree, and strongly disagree. Begin by recoding this variable (govfnaid) into two categories.
Recode the first two responses as one category (1) and the other three responses as a second
category (0).

b. Run a logit regression with your new 0–1 variable as the dependent variable. The independent
variables should include income (realrinc), age (age), sex (sex), and someone’s political
affiliation. For the sex variable, generate a new variable in which 1 is female and 0 is male. For



the political affiliation variable (partyid), generate a dummy variable for Democrats and another
for Republicans. Democrats include strong Democrat and not strong Democrat. Republicans
include strong Republican and not strong Republican. Independents and others will be the
omitted reference category. Be sure to examine the numeric codes before you make the new
variable.

c. Use the margins, dydx(*) command immediately after running your logit regression in question
1b.

d. Write a paragraph for a scholarly journal that would describe the results.
2. In the 2021 GSS, respondents were asked whether they would favor or oppose a law that would

require a person to obtain a police permit before he or she could buy a gun (gunlaw). Run a logit
regression to examine the characteristics of people who favor or oppose the gun permit law. You
can use any variables in the data set that you think would be relevant to opinions on the gun permit
law. Then, write a brief report summarizing your findings. This should be three or four paragraphs:
An introduction, one or two paragraphs that make up your key points, and a concluding paragraph.
You can assume that you are writing this as a short article in Newsweek or The Economist.

Hint: To quickly find variables that may be of interest, open the variable manager. In the space
in the upper left corner, it says, “enter filter text here.” You can type in anything you are looking
for, and it will show you all variables that have those words in the description.

KEY TERMS

binary variable

logit regression

marginal effect

probit regression
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CHAPTER PREVIEW

Topic Description Sample research
question

Stata
commands

Multinomial
logit or
probit (not
ordered)

For use when the dependent
variable is categorical and has no
natural order

What factors predict the
marital status of adults? mlogit

mprobit

Ordered
multinomial
logit or
probit

For use when the dependent
variable is categorical and has a
natural order

What factors are
associated with the
degree of happiness
reported in a survey?

ologit

oprobit



Topic Description Sample research
question

Stata
commands

Instrumental
variable
regression

For use when one or more
explanatory variables may be
affected by the dependent variable
or a confounding factor

Does higher city budget
for the police department
translate into lower crime
rates?

ivregress

Panel data
analysis

For use when the dependent and
independent variables have both
time and cross-section dimensions.

What is the impact of a
new program to improve
literacy in a city?

xtreg

Time-series
analysis

For use when the data describe
patterns over time

Does the price of wheat in
the United States affect
the price of wheat in
Colombia?

var

vec

15.1 INTRODUCTION
Chapter 12 introduced regression analysis, which estimates the equation that best describes the
relationship between a dependent variable and one or more independent variables. We focused on
ordinary least squares (OLS) regression in which the dependent variable is continuous and the model is
linear in the parameters. Chapter 13 covered various problems that may occur in regression analysis
and how to address them. And Chapter 14 described the logit and probit regression models, which are
used when the dependent variable is binary.

However, in many cases, we want to estimate a relationship that is different in some way. This chapter
provides a brief introduction to four alternative types of regression analysis:

Regression analysis when the dependent variable has multiple categories

Regression analysis when one of the explanatory variables is endogenous

Regression analysis with time-series data

Regression analysis with data that have both time-series and cross-sectional dimensions

These methods are briefly described in the next four sections of this chapter. Each of these is a large
topic about which entire books have been written, so we do not attempt to cover them in any depth.
Instead, the goal of this chapter is to acquaint the reader with the topic, introduce a few relevant Stata
commands, and provide guidance for further reading.

15.2 REGRESSION WITH A CATEGORICAL DEPENDENT
VARIABLE
In Chapter 14, we described the logit and probit models, designed for binary dependent variables, but
what if the dependent variable is categorical, with three or more categories? In some cases, there is no
natural order across the categories. An example is a model to predict the marital status of adults (single,
married, divorced, or widowed). In this situation, we can run a multinomial logit model using the mlogit
command or a multinomial probit model using the mprobit command. In other cases, there is a natural
order to the categories, an example being different levels of agreement with a statement (agree, neutral,



disagree). When there is a natural order, we use an ordered logit model (ologit) or an ordered probit
model (oprobit).

Suppose we want to use the 2021 GSS to address the question of whether money buys happiness. The
variable “happy” gives the responses to the question:

Taken all together, how would you say things are these days—would you say that you are

1. very happy,
2. pretty happy, or
3. not too happy.

There is also a variable “realinc” which gives the real income of the household.

The ordered logit regression analysis can be implemented using the ologit command or by using the
menu system: Statistics → Ordinal outcomes → Ordered logisitical regresson. The command and the
results are shown in Figure 15.1:

Description

Figure 15.1 Ordered Logit Model of Happiness

The results from the ordered logit regression give us coefficients for each variable. The coefficient on
real income is negative and statisticially significant. Since the dependent variable is coded such that
happiness is a low number (1) and unhappiness is a high number (3), the negative coefficient means
that higher income is associated with greater happiness. The insignificant coefficient on the female
dummy variable indicates that there is no difference in happiness between men and women, after
controlling for income and age. And the negative and significant coefficient on age indicates that
happiness increases with age. The coefficients in the lower part of the output can be used to calculate
the predicted probability of falling into each happiness category, but it is easier to use the margins
command, as described in Chapter 14.

Of course, we should not take these results too seriously. The pseudo-R2 indicates that these three
independent variables “explain” only a tiny share of the variance in happiness in the sample, implying
that there are many other factors that influence happiness, some of which may affect the size and
significance of these coefficients.

For more information on using Stata for regression analysis of categorical variables, see Long and
Freese (2006).



15.3 INSTRUMENTAL VARIABLES REGRESSION
In Section 13.6, we discussed the problem of endogeneity, where one or more explanatory variables
are correlated with the unobserved error term, causing bias in the estimated coefficient. One potential
solution to endogeneity is instrumental variables. The basic idea is to find one or more variables that (1)
are correlated with the endogenous explanatory variable but (2) do not directly influence the dependent
variable. These are called instruments. Instrumental variable (IV) regression can be considered a two-
stage process. In the first stage, we use regression analysis to estimate the endogenous explanatory
variable as a function of the instrument(s). In the second, we regress the dependent variable on the
estimated value of the endogenous explanatory variable. The coefficient on the estimated value of the
endogenous explanatory variable will be unbiased if it is a strong instrument.

This may be easier to understand with a concrete example. In Section 13.6, we discussed the example
of estimating the effect of the size of the police force on crime rates. Endogeniety is an issue because a
city with a high crime rate may expand the police force to address the problem, which is called reverse
causation. We need an instrument that is (1) correlated with the size of the police force but (2) does not
directly influence the crime rate. Levitt (1997) proposed the size of the fire department as an instrument.
It is likely to be correlated with the size of the police department because both reflect the tax base and
the willingness of the city government to fund municipal services. But it is not likely to directly influence
the crime rate.

In Stata, we can estimate an instrumental variable regression model with the ivregress command or by
using the menu sequence: Statistics → Endogenous covariates → Linear regression with endogenous
covariates. Using the example above, suppose we have a variable “crime” for the crime rate in a sample
of 500 cities, a variable “police” for the per capita city spending on the police department, and “fire” for
the per capita city spending on fire departments. The command for running this would be:

ivregress 2sls crime x1 x2 police(fire), first

The 2sls option indicates the estimation method (2-stage least squares). The first variable (crime) is the
dependent variable. Exogenous independent variables are represented by x1 and x2. The phrase
“police(fire)” tells Stata that “police” is an endogenous explanatory variable that should be estimated in
the first stage using “fire” as the instrument. Finally, the first option first tells Stata to show the results of
the first-stage regression.

However, finding a good instrument is often difficult. We can test statistically whether the instrument is a
good predictor of the endogenous explanatory variable by looking at the goodness-of-fit in the first-stage
regression. However, it is not possible to test whether the instrument has an independent effect on the
dependent variable. This must be a judgement call based on theory and common sense. Weak
instruments will cause biased estimates of the parameters, which may be worse than the bias caused by
endogeneity. For this reason, instrumental variables are one strategy for addressing endogeneity, but
there are other approaches, as discussed in the next section. For more information on regression
analysis using instrumental variables, see Bailey (2020), Greene (2018), and Wooldridge (2019).

15.4 REGRESSION WITH TIME-SERIES DATA
Regression analysis can be a powerful tool for analyzing time-series data—that is, data that describe
trends over time. Examples include studying the effect of an advertising campaign on weekly sales of
shampoo, analyzing the relationship between the monthly prices of wheat in Chicago and Mexico City,
the effect of the North American Free Trade Agreement on exports from the United States to Mexico,
evaluating the impact of a literacy program on reading scores, or estimating the effect of mortgage
interest rates on housing sales. Time-series data gives us new opportunities to identify causality



because of the time delay between cause and effect. However, time-series regression must be done
with care because there are some additional complications that need to be taken into account. Here, we
consider two complications that are specific to time-series analysis: autocorrelation and nonstationarity.

15.4.1 Autocorrelation
One of the challenges of time-series relationships is autocorrelation (also called serial correlation),
where the error terms are correlated over time. A change in an unobserved factor often affects the
dependent variable over several periods. When this occurs, the error terms are positive (or negative) for
multiple periods. For example, product sales may be above expectations for several months after an
unexpected endorsement by a public figure. Or crop prices may be lower than predicted over six months
due to good rainfall. Or business investment may be higher than expected over several months due to a
wave of optimism among investors. Because of this tendency, most time-series variables show positive
autocorrelation, meaning that the error term is positively correlated with previous error terms.

A simple version of autocorrelated error terms with one lag and one explanatory variable can be
represented as follows:
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The error term in the first equation is ut, where the subscript t refers to the time period. The second
equation shows that the error term, ut, is correlated with its previous value, ut-1. The coefficient ρ (rho)
indicates the direction and strength of autocorrelation. For positive autocorrelation, 0 < ρ < 1, and for
negative autocorrelation, −1 < ρ < 0. If ρ = 0, there is no autocorrelation. And εt is an uncorrelated
random error term.

What does autocorrelation look like? We can generate hypothetical data setting β0 = 100 and β1 = 0, so
yt = 100 + ut. We use a random number generator in Stata to create three versions of yt, one where ut
has no autocorrelation, another where it is positively correlated, and a third which has negative
correlation. In Figure 15.2, the left graph shows negative autocorrelation (ρ = −0.8), in which a positive
residual is more likely to be followed by a negative one and vice versa, resulting in a zigzag pattern in
which yt never gets too far from the central value. The middle graph shows a variable without
autocorrelation (ρ = 0). It varies around its mean value (100), but the residual (ut = yt-100) in each period
is unrelated to the residual in previous periods. And the right graph illustrates positive autocorrelation (ρ
= 0.8), in which the positive (and negative) residuals are clumped together, which allows yt to “wander”
away from the center before eventually returning.



Description

Figure 15.2 Example of Data With and Without Autocorrelation

If we run an ordinary least squares (OLS) regression on data with autocorrelation, the result is similar to
that of heteroscedasticity (see Section 13.5): the estimated coefficients are not biased, but the estimates
of the standard error are incorrect. Specifically, if there is positive serial correlation (the more common
case), then the standard errors will be underestimated, so that a coefficient may appear statistically
significant when it is actually not. In addition, OLS estimates are not efficient in that they do not make
use of information about the error terms.

We can test for autocorrelation in the residuals with the Durbin-Watson test, which is implemented in
Stata with the estat dwatson command or with the menu sequence: Statistics → Time series → Tests –
Time-series specification tests after regress → Durbin-Watson d test. If there is autocorrelation in the
residuals, the remedy is to carry out a Cochrane-Orcutt or Prais-Winsten transformation. In simple
terms, the transformation involves three steps: (1) estimate equation 15.1 using OLS, (2) use the
residuals from that model to estimate equation 15.2, and (3) with the estimated value of ρ, regress (yt −
ρyt-1) as a function of (xt − ρxt −1). As usual, we don’t have to follow these manual steps because Stata
will implement them as part of the prais command (or using the menu: Statistics → Time-series →
Prais-Winsten regression). The coefficient β1 estimated from this transformation will be unbiased, but
this is not an improvement because the OLS estimate of β1 is also unbiased. The estimated standard
errors of the coefficient will generally be larger than the OLS standard errors (assuming ρ > 0), but they
will be more accurately measured.

15.4.2 Non-stationarity
Another potential problem in the analysis of time-series data is that the value of the dependent variable
depends on previous value(s) of itself, called a dynamic model. A simple version with just one lag and
one independent variable can be expressed as follows:
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where α is the coefficient describing the strength of autocorrelation. Generally, α varies between 0 and
1. If it is zero, the lagged dependent variable has no effect and drops out of the model. If it is greater
than one, the value of yt will explode, growing exponentially over time.

If 0 < α < 1, it is a dynamic model, which creates a number of complications in regression analysis. First,
a single change in x has an effect on y that extends over time. In the same period, a one-unit increase in
x results in a β1 increase in the value of y. But since yt affects yt+1, which affects yt+2, and so on, the
long-run effect of x on y approaches β1/(1 − α). If α is close to 1, the long-term effect will be much larger
than the short-term effect. Another complication is that a dynamic model that also has autocorrelation in
the error terms results in biased estimates of the coefficients (unlike the case with a nondynamic model
discussed in section 15.4.1). Furthermore, adding a lagged dependent variable to the model when it is
not justified can also result in biased coefficients.

If α = 1, yt becomes a type of nonstationary variable called a random walk. The simplest random walk
(with no independent variables) is expressed as:

y

t

= y

t−1

+ ε

t

where ε
t

 is a standard random normal error term. The value of y at time t is the previous value of y plus
a random error term. Nonstationary variables have some peculiar properties. First, as the sample grows,
the mean does not converge toward a specific value. The expected value of yt is simply yt −1. Second,
the variance is not constant either but grows in proportion to the sample size. And most surprisingly, a
simple OLS regression of two nonstationary variables will often show a “statistically significant”
relationship, even if the two variables are unrelated! Granger and Newbold (1974) showed that even if
the two variables are independent of each other, an OLS regression analysis will show a (false)
statistically significant relationship more than half of the time.

We can test for stationarity with the augmented Dickey–Fuller test, which is implemented in Stata with
the dfuller command or the menu sequence: Statistics → Time series → Tests → Augmented Dickey-
Fuller unit-root test. The null hypothesis of this test is nonstationarity, so if the p-value is below 0.05 or
0.01, we reject the null hypothesis and conclude that the variable is stationary.

Nonstationarity is a characteristics of many—if not most—time-series variables, particularly those in
economics, such as gross domestic product, the value of exports, the consumer price index, and the
price of commodities. Fortunately, even if a variable itself is nonstationary, the first difference of the
variable is often stationary. In other words, although the variable yt is nonstationary, the transformed
variable Δy

t

= y

t

− y

t−1

 is often stationary.

This point can be demonstrated with data on the wholesale price of maize (corn) in Rosario, Argentina
(see Figure 15.3). The black line represents the level of maize prices, while the blue line is the first
difference of the maize price. The price level wanders in a random walk, while the first difference
maintains a stable pattern around zero.



Description

Figure 15.3 Price of Maize in Argentina and First Difference

We can use the augmented Dicky–Fuller (ADF) procedure to test these impressions, as shown in Figure
15.4. The upper part shows the ADF test of the price level, “P_maize_Rosario”, where the p-value is
0.3653, implying that we cannot reject the null hypothesis that the price level is nonstationary. The lower
part gives the ADF test of the first difference of the price, “DP_maize_Rosario,” where the p-value of
0.000 indicates that we can reject the null hypothesis of nonstationarity. These results suggest that, as is
often the case, the price level is nonstationary but the first difference is stationary.

Description



Figure 15.4 Testing for Stationarity

If ADF tests indicate that we are working with a set of stationary variables, one common approach in
time-series regression analysis is to use a vector autoregression (VAR) model. Rather than assume that
one variable is dependent and the others are independent, a VAR treats all variables the same. It
estimates multiple equations simultaneously, each of which consists of one variable as a function of past
values of itself and past values of the other variables. The idea is to let the data determine the direction
of causality rather than forcing the researcher make assumptions about causality. In Stata, the
command var implements the vector autoregression model.

On the other hand, if we are working with a set of nonstationary variables, such as the price of maize in
various countries, we need a different approach. Although nonstationary variables behave strangely, the
relationship between two or more nonstationary variables may be stable. In technical terms, there may
be a linear equation between two or more nonstationary variables such that the residual is stationary.
This is called a cointegrated relationship, and it can be modeled with a vector error correction (VEC)
model. The VEC model is similar to a VAR model of the first differences except that it also includes an
expression for the long-run relationship among the levels of the original variables. This method was
developed by Engle and Granger (1987) and is widely used in the analysis of prices, macroeconomic
variables, and other time-series relationships. Stata has commands for testing for cointegration
(vecrank) and running the model (vec). However, these are large topics and beyond the scope of this
chapter. Readers interested in delving into time-series regression analysis may be interested in books
by Banerjee et al. (1993) and Becketti (2013). In addition, Stata offers a 987-page manual on the
commands for analysis of time-series data (StataCorp, 2023).



15.5 REGRESSION THAT COMBINES CROSS-SECTION AND
TIME-SERIES DATA
Regression analysis can also be used to analyze data that combine cross-sectional units (such as
households, companies, or countries) with two or more time periods (such as survey rounds, months, or
years). Often the data cover the same cross-sectional units over time, such as two rounds of a survey
carried out on the same households. This is called panel data, and it is particularly useful to researchers
looking for evidence of causality between variables.

15.5.1 Panel Data Analysis
Why is panel data so useful? Suppose we are trying to measure the effect of income and meat prices on
meat consumption using two rounds of household survey data with different samples (not a panel). And
suppose vegetarians are more common in urban areas, where meat prices tend to be higher. Thus,
urban households consume less meat per capita partly because prices are higher and partly because
some are vegetarian. Without data on vegetarianism, the price variable will capture both effects. In the
terminology of regression analysis, an unobserved variable (vegetarianism) affects the dependent
variable (meat consumption) and is correlated with an independent variable of interest (price), resulting
in a biased estimate of the coefficient on the variable of interest (prices).

Now suppose the household survey was carried out twice, interviewing the same households in each
round, resulting in a panel dataset. One type of panel data regression analysis, called fixed-effects
analysis, measures only the relationship between dependent and independent variables within each
cross-sectional unit over time. In other words, it would estimate the effect of changes in meat prices on
meat consumption between the two rounds of the survey. All household-specific characteristics,
including taste, preferences, religious beliefs, dietary restrictions, and vegetarianism, would be
controlled, so the coefficient on price would not be influenced by the fact that vegetarians live in areas
with high meat prices.

How does fixed-effect regression work? Mathematically, it is equivalent to adding a dummy variable for
each household in the sample. It is also equivalent to calculating the deviation of each observation from
the mean (y* = y
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= x

it

−

–

x

i

) and then regressing y* as a function of x*.

Fortunately, these calculations can be done by Stata as part of the xtreg command. We first need to tell
Stata the variables that identify the cross-section units and the time units with the xtset command.
Then, we run the xtreg command with the fe option for fixed effects. We can include other explanatory
variables in the regression, such as per capita income and household size:

xtset hhid round 
xtreg meatcon meatprice pcinc hhsize, fe

In this case, the coefficient on “meatprice” would give us a reasonable estimate of the impact of changes
in the price on meat consumption without any bias caused by vegetarianism.

Panel data can also help address problems of endogeneity caused by reverse causation. Recall the
example from Section 15.3 where we wanted to study the effect of the size of the police force on crime
rates. The problem of reverse causation could be addressed with panel data, such as a database of
crime rates and the size of police force for 500 counties over 10 years. We could estimate the crime rate
as a function of the size of the police force in previous year(s) and other factors. By using a time lag, we
could reduce the risk that we are measuring the reverse relationship—that is, the effect of crime rates on
the size of the police force.



A common alternative to the fixed effect estimator (fe) is the the random-effects estimator (re), in which
the coefficients are based on a weighted average of the time-series pattern (also called the within
estimator) and the cross-section pattern (also called the between estimator). There are also Stata
commands for analyzing panel data with instrumental variables, logit, probit, and other types of models.

15.5.2 Difference-in-Difference Analysis
One common type of analysis of combined cross-section and time-series data is the difference-in-
difference approach. It is similar to the fixed-effect regression analysis described above except that the
independent variable of interest is typically binary. Difference-in-difference analysis is often used to
study the impact of a program using two time periods and two cross-sectional groups: a treatment group
and a control group. Suppose we are interested in the effect of a literacy program on reading scores.
We give a literacy test to students before and after the program is launched, and the second round of
testing includes some who participated in the program (the treatment group) and some who did not (the
control group). To calculate the impact of the program, we calculate the change in literacy in the
treatment group minus the change in literacy in the control group. The average treatment effect on the
treated group (ATET) is calculated as follows:

ATET = (
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–
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−

–

y
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)

where –y refers to the average test score, subscripts T and C refer to treatment and control groups, and
subscripts 1 and 2 refer to the testing before and after the program is implemented. This expression
measures the increase in reading scores in the treatment group minus the increase in scores among the
control group, hence the difference-in-difference label.

We could do these calculations with the command table treat round2, stat(mean score), where “treat”
is a dummy variable for the treatment group, “round2” is a dummy variable for the second round (after
the program), and “score” represents the reading test results. However, there are two important
advantages of using regression analysis. First, the regression analysis will generate tests of statistical
significance, so we can say whether the impact of the literacy program is statistically significant. Second,
we can add other independent variables to control for other factors, such as age, sex, and whether the
person is a native English speaker. If we calculate an interaction term that is 1 for observations of the
treatment group and in the second round of surveys, then we can run the regression as follows:

gen treat_r2 = treat*round2 
regress score treat round2 treat_r2 age sex nativeEng, noconstant

The coefficient on the variable “treat” tells us the difference between treatment group scores and control
group scores in the first round of the survey. Ideally, this is close to zero, indicating that our two groups
are similar. The coefficient on the variable “round2” tells us the increase in reading scores in the second
round among the control group. We expect this to be positive given that scores tend to rise with age and
schooling. And the coefficient on the interaction term “treat_r2” tells us the increase in treatment group
scores minus the increase in control group scores, that is, the impact of the literacy program on reading
scores. This is equivalent to the average treatment effect on the treated (ATET), described above. If this
coefficient is positive and statistically significant, it suggests that the literacy program was successful.

If we have panel data (the same sample of students in Round 1 and Round 2), we can use the xtreg
command with the fixed-effect option, which will provide a better estimate of the impact of the literacy
program because it will control for all time-invariant characteristics of each student. There are also



specialized Stata commands for difference-in-difference regression which provide additional options
(didregress and xtdidregress).

15.5.3 Randomized Controlled Trial
The difference-in-difference strategy is a good way to measure the impact of an intervention, but it still
relies on some assumptions. Continuing with the example of the literacy program, it assumes that
nonparticipants will gain as much from the intervention as participants did. In practice, this type of study
usually relies on schools that agree to participate in the program and students who volunteer to sign up.
It is possible that students who volunteer for the literacy program are smarter or more hardworking than
those who do not. In this case, participants might benefit more than nonparticipants would have, which
would overstate the impact of the program if it were scaled up to include all students. Alternatively, the
schools may encourage underperforming students to enroll, which may understate the impact.

The gold standard of measuring the impact of an intervention is the randomized controlled trial (RCT).
Like the previous example, there is an intervention group and a control group, with two (or more) rounds
of data collection on each. The RCT differs because it uses randomization to decide who is in the
treatment group and who is in the control group. In the study of the literacy program, researchers would
start with a list of eligible students and allocate them into the two groups using a random-number
generator. If the sample is large enough, it would essentially eliminate the risk that one group will benefit
more from the program than the other group.

Similarly, the study of the impact of the size of the police force on crime rates could carried out as an
RCT by providing funding to (say) 100 randomly selected counties to increase the police force by 10%,
while randomly selecting another 100 counties that would not get any additional funding. Fixed-effect
regression analysis would compare the change in crime in the two groups of counties.

Some versions of randomized trials have been used in medical research since the 18th century, when it
was used to study treatments for scurvy among British sailors. The use of RCTs in the social science
research is more recent, but it has grown rapidly in the past few decades. Although RCTs are
considered the gold standard for measuring causal effects, they can be costly and cannot be applied to
some research topics for reasons of scale (e.g., the effect of trade policy) or ethical considerations (e.g.,
the effect of length of prison sentence). In the example above, providing enough funding for 100
counties to expand their police force would be quite costly.

This section has provided a brief overview of some methods for addressing the problem of endogeneity,
but a detailed discussion is beyond the scope of this book. Nonetheless, it is important to be aware of
the issue of endogeneity. With OLS regression in a nonexperimental setting, we must be very cautious
in inferring that a relationship as causal. To do so, we must have strong reasons to believe that there is
no reverse causality and that there are no confounding variables that influence both the dependent and
the independent variables. Bailey (2016) describes numerous topics in regression analysis with
particular emphasis on the problem of—and solutions to—endogeneity.

15.6 SUMMARY OF COMMANDS USED IN THIS CHAPTER
This last section summarizes all of the Stata code used in the chapter (Table 15.1). In addition, all Stata
code used throughout the book is summarized in Appendix 1.



Function Stata command(s)
Ordered logit model ologit happy realinc age female
Instrumental variable regression model ivregress 2sls crime x1 x2

police(fire), first
Test for autocorrelation estat dwatson
Regression with Prais-Winsten transformation to address
autocorrelation

prais y x1 x2

Test variable for stationarity dfuller x1
Test for cointegration of two or more variables vecrank x1 x2
Test for appropriate lag length varsoc x1 x2
Run vector error-correction model vec x1 x2
Set up panel data analysis xtset hhid round
Run panel data analysis xtreg meatcon meatprice pcinc

hhsize, fe
Difference-in-difference with non-panel data regress score treat round2 treat_r2
Difference-in-difference with panel data xtreg score treat, fe

EXERCISES
1. Suppose you are studying the effect of youth sports programs on school attendance among

teenagers. However, you realize that there is an endogeneity problem because the income of the
parents could affect both their child’s participation in the sport program and their child’s likelihood of
attending classes. To address the endogeneity problem, you decide to use distance to a youth
program as an instrument for participation in a youth program.

a. What are the two requirements for a good instrument? Which of the two can be tested, and
which cannot?

b. Assuming that you have a dataset with variables for participation in a youth program
(“youthprog”), school attendance (“attendance”), and distance to a youth sports program
(“distance”), what command(s) would you use to run an instrumental variable regression to



estimate income as a function of education. Assume all three variables are continuous
variables.

2. Based on your analysis in Question 1, you decide that the distance to the youth program is not a
good instrument for participation in the youth program. You decide a difference-in-difference model
using panel data is the best way to determine whether the youth sports program is having an effect
on school attendance.

a. Describe briefly how you would collect the panel data. Explain why a control group is
necessary. Explain why two rounds of data collection are needed.

b. What Stata command would you use to analyze the panel data, using the variable names given
in Question 1?

c. How would you change the design of the study if you decided to use a randomized controlled
trial to evaluate the impact of the youth sports program on school attendance?

3. You are studying the statistical properties of maize prices in Latin America using the data file “FAO
maize prices.” Before starting the time-series analysis of the prices, you want to know whether they
are stationary or not.

a. What test will tell you whether a time-series variable is stationary or not?
b. Test the price of maizes in Bogota, Colombia, and Mexico City for stationarity. What is the p-

value of each, and what do you conclude about the stationarity of each price?
c. Calculate a new variable of the first difference of these two prices, and test these for

stationarity. What do you conclude about the stationarity of the first differences of the two
prices?

Descriptions of Images and Figures
Back to Figure

In the output, the dependent variable is "happy," and the independent variables are "realinc", "female,"
and "age." The model includes 3,314 observations, with a log likelihood of -3181.3889 and an LR
chi2(3) of 93.90. The pseudo R-squared is 0.0145.

The table shows coefficients, standard errors, z-scores, p-values, and 95% confidence intervals for the
predictors:

realinc: Coefficient = -7.91e-06, Std. Err. = 8.59e-07, z = -9.21, p-value = 0.000, with a 95% confidence
interval of [-9.59e-06, -6.22e-06].

female: Coefficient = 0.0180778, Std. Err. = 0.068961, z = 0.26, p-value = 0.793, with a 95% confidence
interval of [-0.1170833, 0.153239].

age: Coefficient = -0.0049096, Std. Err. = 0.0020131, z = -2.44, p-value = 0.015, with a 95% confidence
interval of [-0.0088551, -0.000964].

Additionally, there are two cut-off values:

/cut1: Coefficient = -2.002207, Std. Err. = 1.309775, with a 95% confidence interval of [-2.258918,
-.153239].

/cut2: Coefficient = 0.6922285, Std. Err. = 1.255487, with a 95% confidence interval of [.4461577,
.9382994].

Back to Figure

First graph: Autocorrelation p = –0.8 (Negative autocorrelation)

The x-axis represents "Time" ranging from 0 to 50, and the y-axis represents values between 95 and
110.



The line follows a zigzag (up-and-down) pattern, starting around (0, 103) and ending around (50, 100).

Second graph: Autocorrelation p = 0 (No autocorrelation)

The x-axis represents "Time" ranging from 0 to 50, and the y-axis represents values between 95 and
110.

The line follows a random up-and-down pattern, starting around (0, 98) and ending around (50, 96).

Third graph: Autocorrelation p = 0.8 (Positive autocorrelation)

The x-axis represents "Time" ranging from 0 to 50, and the y-axis represents values between 95 and
110.

The line follows a pattern where it initially increase, then decreases, then again increases, starting
around (0, 100) and ending around (50, 103).

Back to Figure

The x-axis ranges from 2005m1 to 2025m1, and the y-axis ranges from -0.1 to 0.3. The line labeled
“Wholesale price of maize in Rosario Argentina (US$/kg)” starts at approximately 0.075 in 2005m1 and
rises to around 0.299 in 2025m1. The line labeled “First difference of Rosario maize price” starts at
about 0 in 2005m1 and rises to around 0.05 in 2025m1.

Back to Figure

First test:

Command: dfuller P_mz_Rosario, trend

The test was conducted on the variable P_mz_Rosario with 226 observations and 0 lags.

The null hypothesis (Hθ) is: Random walk with or without drift.

The test statistic (Z(t)) is -2.427, with critical values at the 1%, 5%, and 10% levels being -3.998, -3.433,
and -3.133, respectively.

The MacKinnon approximate p-value for Z(t) is 0.3653.

Second test:

Command: dfuller DP_mz_Rosario, trend

The test was conducted on the variable DP_mz_Rosario with 225 observations and 0 lags.

The null hypothesis (Hθ) is: Random walk with or without drift.

The test statistic (Z(t)) is -10.663, with critical values at the 1%, 5%, and 10% levels being -3.998,
-3.433, and -3.133, respectively.

The MacKinnon approximate p-value for Z(t) is 0.0000.
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research paper Describe the general topic

What research has been done and what are the gaps in this
literature?

Define your specific question and how it relates to the gaps or
contributes to the literature

How will you answer your question (method)?

Overview of results

Outline of paper

Literature review
Identify key themes in literature related to the research question

Summarize significant sources within each theme

Identify remaining gaps in literature that you intend to address

Theory, data, and
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Type of analysis

Expected outcomes based on theory

Measurement of variables

Results
Restate research questions

Results related to each research question

 
Do results agree or disagree with literature?

Recommendations based on the results

Limitations of the study

Areas for future research

Conclusions
Summarize the key findings

Why are the results important?

16.1 INTRODUCTION



As described in Chapter 1, the research process begins with reading the literature, identifying gaps in
the literature, and defining your research question. Once you have defined your research question,
there are six parts to a typical research paper. This may vary depending on the journal or type of
publication, but in general, all of the components listed previously will be included in a research paper.
We will review each of these six parts.



16.2 INTRODUCTION SECTION OF A RESEARCH PAPER
The introduction to a journal article or research paper should begin by defining the general topic. In
other words, what is the big picture? Why is this research important, or why should the reader be
interested? Using a paper by Talan and Kalinkara (2023) “The Role of Artificial Intelligence in Higher
Education: ChatGPT Assessment for Anatomy Course,” we will illustrate each part of the introduction.
Their opening paragraph is as follows:

As scientific knowledge continues to grow exponentially, new technological developments
emerge every day. These technological developments and changes have the potential to
facilitate, transform, and improve our lives, and can bring great benefits to the fields in
which they are used. In fact, it is difficult to think of an area that is not affected by technology
today. However, as technology continues to rapidly advance, questions are being raised
about how it can be effectively used in various fields and what impact it will have. One area
that has seen significant investment in recent years is education, with virtual reality,
augmented reality, metaverse, blockchain, simulation, mobile technologies, robotics and
automation, and online learning environments all being implemented. Among these
technological advancements, artificial intelligence (AI) stands out as one of the most successful
and widely-used technologies in many sectors.

The bold and italicized parts of the text are used to illustrate that the authors first identify the big picture
and why we should be interested (technological developments can transform and improve our lives).
They then tell us that there are some concerns (how can it be used effectively).

The second part of the introduction is to illustrate in brief what has already been written about this topic.
This is not the full literature review, but only a selection of literature that will support your rationale for
choosing the topic. It will also begin to identify gaps in the literature. Talan and Kalinkara (2023) do this
in these three paragraphs:

The primary objective of AI is to enhance the comprehension of human intelligence and to
augment machine intelligence to attain maximum benefit from them (Tektaş, Akbaş & Topuz,
2002). AI is a wide-ranging domain that is constantly advancing and leading the way in
technological progress (Büyükgöze & Dereli, 2019). Although various research endeavors have
been undertaken in AI across multiple fields, its impact on education has also been
investigated. AI is applied across several disciplines, including law, science, mathematics,
health, engineering, and architecture (Korkmaz & Büyükgöze, 2019; Taşçi & Çelebi, 2020).
Research in this field is gaining momentum, and progress is being made through continued
research and development activities.

Over the years, AI technologies have evolved and taken various forms. Despite the fact that AI
research has a long history, these systems have now become an essential part of human life
thanks to the investments made over the years and the widespread use of technological tools
such as the internet and smart devices. Currently, there are numerous AI technologies, most of
which are still in the research stage. In recent years, AI technologies have been applied in
diverse fields, including smart cities, smart watches, robotics, drone systems, defense industry,
cybersecurity, and healthcare (Sarica, 2021; Talan, 2021).

However, the potential use of AI in education, its contribution to education, and its
impact on education are still subjects of debate, with numerous predictions and
considerations. While developments in AI offer significant opportunities for the
education sector, they also pose a threat at times. Thus, AI technology needs to be
carefully considered and evaluated in many ways. AI’s potential to be one of the most



important technologies of the future increases when the potential risks and benefits it offers are
evaluated, and the necessary precautions are taken.

In these three paragraphs, Talan and Kalinkara (2023) describe articles written about the advances in
AI, but they also begin to identify gaps or limitations in the studies, as illustrated in the italicized
sentences.

Once it has been established that there are gaps in the literature, the next step is to define your own
research question and determine how it fits into the literature and how it addresses the gaps. This is
demonstrated in Talin and Kalirkara’s paper as follows:

Despite the potential benefits of ChatGPT as an educational tool, the full extent of its impact on
education remains uncertain and requires further investigation (de Winter, 2023; Qadir, 2022;
Zhai, 2022). It is crucial to consider both the potential advantages and risks associated with
emerging technologies like ChatGPT in order to anticipate and prepare for the future of
education. One significant concern is the possibility of students using ChatGPT to cheat,
particularly on online exams, due to its ability to generate personalized and authentic
responses (de Winter, 2023; StokelWalker, 2022; Susnjak, 2022). As online education
becomes increasingly widespread, ensuring the validity and reliability of online exams is a
critical issue that must be addressed. It is important to acknowledge that further research
is required to develop effective strategies that mitigate potential risks and leverage the
benefits of AI. Furthermore, there is a scarcity of literature that delves into the potential
educational use of ChatGPT, a novel tool in this domain. Hence, investigating the
capabilities of this AI agent is anticipated to augment the current body of knowledge. This
study aims to evaluate the performance of the newly launched ChatGPT on anatomy
course examination questions among students enrolled in the Faculty of Health
Sciences in Turkey.

Talan and Kalinkara clearly state the concerns about GhatGPT above while also identifying the lack of
literature on the potential educational use of ChatGPT. They then identify their own purpose in the last
sentence.

After identifying your research question, the next section of the introduction typically describes the
method used to answer the study. The method may include a variety of techniques used to do your
research. These include case studies, cost–benefit analyses, regression analyses, surveys, meta-
analyses, and forecasting. Some studies are simply an exhaustive literature review. Talan and Kalinkara
describe their method as follows:

This study aimed to compare the performance of ChatGPT with that of health sciences faculty
students in answering anatomy course questions. A descriptive study design was employed,
and 37 students from a state university in Turkey participated in the study. The students
received four weeks of training on a specific anatomy topic and then took a multiple-choice test
comprising 40 questions on the covered material. The same test was also given to ChatGPT,
and the answers generated were compared with those of the students. The data were
analyzed using descriptive statistics, including the number, percentage, and mean.

If your study is a literature review, you should not describe the method as “I used primary and secondary
sources.” Instead, you should be specific about how you used the sources or what you looked for in the
sources. In their abstract below, Allgood, Walstad, and Siegfried (2015) provide an excellent example of



how to describe their method that uses a literature review of research on teaching economics to
undergraduates:

This survey summarizes the main research findings about teaching economics to
undergraduates. After briefly reviewing the history of research on undergraduate economic
education, it discusses the status of the economics major-numbers and trends, goals,
coursework, outcomes, and the principles courses. Some economic theory is used to explain
the likely effects of pedagogical decisions of faculty and the learning choices that students
make. Major results from empirical research are reviewed from the professor’s perspective on
such topics as teaching methods, online technology, class size, and textbooks. Studies of
student learning are discussed in relation to study time, grades, attendance, math aptitude, and
cheating. The last section discusses changes in the composition of faculty who teach
undergraduate economics and effects from changes in instructional technology and then
presents findings from the research about measuring teaching effectiveness and the value of
teacher training. (p. 285)

Following a description of the method, one paragraph is typically used to describe the results or key
highlights of the paper. Finally, the last paragraph of the introduction to a journal article or report is often
used to indicate what will be included in each section of the paper. This is not essential, and it is not
always included in a short journal article. Longer papers or reports, however, typically do have this
paragraph. Below is an example from the Allgood et al. (2015) paper on teaching economics to
undergraduates:

The article is divided into eight sections that include this short introduction and a conclusion. In
the second section, we briefly review the history of research on teaching college economics to
acquaint instructors with the major developments and sources of information on the subject
since its origins in the 1960s. In the third section, we survey the landscape of undergraduate
economics to describe enrollments, the typical curriculum of courses for undergraduate
economics students, and outcomes from the economics major. In the fourth section, we use
economic theory to explain the likely effects of decisions that economics professors can make
either in structuring or teaching their courses, and also students’ decisions about enrolling and
participating in economics courses. The purpose of this theory section is to increase the
understanding of empirical findings about faculty teaching decisions and selected student
behaviors and decisions that are the subjects of the fifth and sixth sections. The seventh
section briefly discusses how changes in the characteristics of faculty and changes in
technology are likely to affect undergraduate economics instruction in the future, before turning
to the issue of teaching effectiveness and examining research on the assessment of instruction
from student and faculty perspectives. (p. 286)

16.3 LITERATURE REVIEW
As noted in the previous section, part of the literature review appears in the introduction. It may also be
woven into other parts of the paper. For example, results from empirical studies are sometimes
compared with the previous literature in the results or discussion section of the paper. The data and
methods section may also review methods used in previous studies. In many papers, however, there is
a separate section devoted to the literature review. We offer guidelines about this section next.

The purpose of a literature review is to summarize the most significant sources related to a research
question. Rather than describing each article or source in its own paragraph like an annotated
bibliography, the sources are woven into paragraphs based on themes or main points. The literature



review should identify where the sources agree or disagree and how they relate to the research
question of the paper. Overall, like the introduction to the paper, the literature review should convince
the reader that your topic is interesting, is important, and fills a gap in the literature.

Students often ask how many sources they should include in the literature review. There is no magic
number. If the research question is well-defined, it will help narrow your search. If the question is too
broad, then there could be thousands of articles on a topic. Once you have refined your question, you
should include significant sources specifically related to your question. “Significant sources” would
generally refer to articles that appear in peer-reviewed journals and are cited frequently by other articles
or papers. Obviously, if articles are very recent, they won’t have a large number of citations. These
should be reviewed to determine if they are relevant to your question.

In the example of a literature review that follows, Enfield (2013) conducted a study in which he “flipped
the classroom.” He first reviewed the literature related to the benefits and drawbacks of flipping the
classroom and then described the results of his own experiment.

Flipping the classroom involves providing instructional resources for students to use outside of
class so that class time is freed up for other instructional activities. The Flipped Classroom
Model is described and defended by Mull (2012). While not all of the principles Mull describes
are utilized by all teachers who flip their classroom, all implementations include the idea that,
“Students prepare for class by watching video, listening to podcasts, reading articles, or
contemplating questions that access their prior knowledge.” (para. 3).

Milman (2012) explains, “the idea is that rather than taking up valuable class time for an
instructor to introduce a concept (often via lecture), the instructor can create a video lecture,
screencast, or podcast that teaches students the concept, freeing up valuable class time for
more engaging (and often collaborative) activities typically facilitated by the instructor” (p. 85).
Milman goes on to note that formative and summative assessment should be incorporated, as
well as meaningful face-to-face learning activities.

Proponents of a Flipped Classroom provide many arguments for engaging students in the
content outside of the class to free up time in class for other instructional activities. Milman
(2012) identifies what could be considered the primary advantage: increased class time for
more engaging instruction. Millard (2012) describes advantages such as increased student
engagement, strengthening of team-based skills, personalized student guidance, focused
classroom discussion, and creative freedom of faculty while maintaining a standardized
curriculum. Fulton (2012) notes that Flipped Classrooms allow students to move at their own
pace, access instruction at any time, access expertise from multiple people, benefit from better
used classroom time and more.

While many educators who have flipped their classrooms tout the benefits they experienced,
there are critics to this approach. Nielsen (2012) discusses concerns with accessibility to
instructional resources being provided online, the growing move towards no homework,
increased time requirements without improved pedagogy, lack of adapting the classroom
environment to reflect the flipped classroom’s ability to support student-centered learning
(allowing students to learn at their own pace), and use of lectures to provide instruction with
disregard to individual student learning styles. Mull (2012) addresses several of the common
concerns which, in addition to some previously mentioned, include teachers’ concerns that their
role will be diminished, the students’ experience with the out-of-class instruction will not be
interactive, a lack of accountability for students to complete the out-of-class instruction, and the
restrictive cost and time needed to produce instructional materials. Milman (2012) also notes
several concerns with the Flipped Classroom approach, including poor quality video
production, conditions in which the students view the video, inability to monitor comprehension



and provide just-in-time information when needed, and use with second-language learners or
students with learning disabilities.

Given all of the benefits and drawbacks of the approach, it appears that there is a place for the
Flipped Classroom Model for at least some instructional contexts. “Although there are many
limitations to the flipped classroom strategy and no empirical research exists to substantiate its
use, anecdotal reports by many instructors maintain that it can be used as a valuable strategy
at any level, depending on one’s learners, resources, and time” (Milman, 2012, p. 86). Milman
notes that while the Flipped Classroom approach lends itself well to learning of procedural
knowledge, it can also be used for the learning of factual, conceptual, and metacognitive
learning. (Enfield, 2013, pp. 14–15)

Overall, Enfield reviews five sources in his literature review. Rather than writing about each of the five
articles in separate paragraphs, he weaves them into paragraphs based on the main argument or theme
of each paragraph. Note the same authors can appear in multiple paragraphs and on both sides of the
argument. Overall, the structure is as follows:

Paragraph 1: Introduces the idea of a flipped classroom as presented by Mull

Paragraph 2: Discusses the benefits of a flipped classroom as presented by Milman

Paragraph 3: Lists other benefits identified by three authors: Milman, Millard, and Fulton

Paragraph 4: Identifies criticisms of a flipped classroom by three authors: Nielsen, Mull, and Milman

Paragraph 5: Acknowledges that there are benefits and drawbacks based on the literature review.
Identifies the gap—no empirical research on the effectiveness of the flipped classroom

Another key question when conducting a literature review is when to use a direct quote from the
literature and when to paraphrase. Direct quotes are typically used when the original passage is so
unique or well stated that it can’t be easily paraphrased. They are also used if they offer a definition for
an unusual word or concept. Paraphrasing, on the other hand, is used to summarize or simplify other
research. Generally, direct quotes should be limited, while paraphrasing is much more common.1

16.4 THEORY, DATA, AND METHODS
The method used in a research paper is typically described briefly in the introduction, as discussed
earlier. If the paper is based on some type of empirical research (analysis of data), then the data and
methods section will go into much greater detail. It is considered the most important part of the paper
since it establishes the validity of the paper. In other words, it allows the audience to judge if the results
are valid, how they fit into known theories, and if they can be applied to the general population. Because
of its importance, this section should be clear, precise, and detailed enough that the same study could
be replicated.

For the type of study that we describe in this book (collecting data and using statistical techniques to
analyze the data), the following information would be included in the data and methods section:

Data information

When and where the data were collected



Who collected the data (which organization)

The sampling method and sample size

Limitations or problems with the data

Adjustments to the data and weighting procedures

Method information

Type of analysis (regression, descriptive statistics, hypothesis testing—t tests, ANOVA, chi-squared
tests, case studies, forecasting, etc.)

Expected outcomes or signs of variables (based on theory, hypotheses, or previous literature)

Measurement of variables used in the analysis

Although theory is often woven into the introduction and the literature review, it often appears in the
methods section to position the research approach within a school of thought or to indicate the expected
outcome of the research based on theory.

What follows is an example of a description of the data collection method from an article on the use of
prescription stimulants among undergraduate students (Teter, McCabe, Cranford, Boyd, & Guthrie,
2005):

The Institutional Review Board at the University of Michigan approved the protocol for the
present study and all participating students gave informed consent. The study was conducted
during a 1-month period in March and April of 2003, drawing on a total undergraduate
population of 21,294 full-time students (10,860 women and 10,434 men). Two drug-related
surveys were being conducted at the same time and we did not want to burden undergraduate
students with taking 2 similar surveys. Therefore, we surveyed the entire population but this
study was based on a random sample of 19,278 students and the other study used the
remaining students. We sent the sample group an e-mail message describing the study and
inviting them to self-administer the Student Life Survey (SLS) by using a unique password and
clicking on a link to access the Web survey. The Web survey was maintained on an Internet
site running under the secure socket layer protocol to ensure privacy and security. We sent 3
reminder e-mails to non-respondents. By participating in the survey, students became eligible
for a sweepstakes of 13 cash prizes ranging from $100 to $1,000. The final response rate was
47%, which is consistent with other college-based AOD studies. (pp. 253–254)

This same article then has additional subsections describing the questionnaire, measures used for
different variables, and procedures used in data analysis. For example, in the “Measures” subsection,
the authors provide the exact wording used on the questionnaire to determine how often students used
illicit drugs over the past year and over their lifetime.

16.5 RESULTS
The purpose of the results section is to identify the most relevant results needed to answer the research
question(s). In addition, however, summary statistics related to the variables used in the analysis are
also given, such as a table showing the mean and standard deviation of each key variable.



In some journals, the results section includes an interpretation of the results and possible policy
implications. In other journals, however, the results section is used strictly to state the results.
Interpretation and analysis then follow in a “Discussion” or “Comment” section. Some guidelines for the
results section are offered below.

16.5.1 Logical Sequence
The results section often follows the order of the research questions or hypotheses stated in the
introduction and then reports on the tests related to each question or hypothesis. Typically, broader
results are reported first followed by detailed analyses of each research question. For example, in the
Teter et al. (2005) paper on the use of stimulant drugs among undergraduates, they state two primary
objectives or questions in their introduction: (1) What is the prevalence and motive for use of stimulant
drugs? (2) Is there a link between the motives for use of stimulants and the use of alcohol and other
drugs? Their results section is then divided into two sections that answer these questions as follows:

Prevalence Rates and Motives for Use

More than 8.1% of the undergraduate student sample (n = 689) reported the illicit use of
prescription stimulants in their lifetime, and 5.4% (n = 458) reported illicit use in the past year;
undergraduate men reported significantly higher lifetime rates than did undergraduate women
(9.3% vs 7.2%, p < 0.001). Lifetime rates were higher for White (9.5%) and Hispanic (8.9%)
students than for African-American (2.7%), Asian (4.9%), or other racial student groups (5.8%),
χ2(4, N = 8,460) = 55.08, p < 0.001.

The primary motives that students gave for using prescription stimulants illicitly were (1) to help
with concentration, (2) to increase alertness, and (3) to get high. We observed no gender
differences in motives for illicit use. The frequencies for each motive and the index describing
the number of motives endorsed are presented in Table 3. Approximately half the students who
endorsed the illicit use of prescription stimulants gave more than 1 motive for this behavior. On
average, students reported 1.65 ± 0.91 motives (range 0–5, mode 1.0) for the illicit use of
prescription stimulants. Of the 689 students who endorsed the lifetime illicit use of prescription
stimulants, 31 did not provide a motive for their behavior, 19 students chose the “Refused”
category, and 12 students did not provide any motive.

The proportion of each motive within a given frequency range was relatively consistent (see
Figure 1). For example, using prescription stimulants “to help concentrate” accounted for
approximately 30% of the motives, regardless of the number of occasions of illicit stimulant
use. However, the distribution in the actual frequency range of illicit prescription stimulant use
was skewed, with a steady decrease in the number of students reporting more frequent use.
For example, a total of 254 students reported the illicit use of prescription stimulants on 1 to 2
occasions, compared with 45 who reported 40 or more occasions. The data in Figure 1 do not
represent those 31 students who did not provide a motive and therefore consist of 658
students.

Approximately 14% (n = 97) of the illicit prescription stimulant users also reported being
prescribed stimulant medication in their lifetime. We found no differences in any of the
motivations endorsed by those illicit users who were also prescribed stimulants in their lifetime
compared with the illicit users who had never been prescribed stimulants. For example,
approximately 40% of those who endorsed the illicit use of prescription stimulants provided “to
get high” as a motive, regardless of whether they had also been legitimately prescribed
stimulant medications.

Alcohol and Other Drug Use Behaviors



Chi-square analysis revealed significantly higher rates of AOD use for those students who
reported the illicit use of prescription stimulants, compared with nonstimulant users (see Table
4). Furthermore, regardless of the motive or motives for the illicit use of prescription stimulants,
the 689 students who endorsed these behaviors also reported significantly higher rates of AOD
use in the recent past. For example, only 1.6% of those who reported no illicit prescription
stimulant use had used cocaine in the past year, whereas those who reported the illicit use of
prescription stimulants to help them concentrate, increase alertness, or get high had past-year
cocaine prevalence rates of 28.6%, 31.1%, and 35.4%, respectively. Data in Table 4 also show
that the “counteracts the effects of other drugs” and the “to get high” motives were strongly
associated with cocaine and amphetamine use. Finally, AOD use was positively related to the
number of motives given for the illicit use of prescription stimulants, particularly for cocaine,
ecstasy, and amphetamine use (See Table 5). (Teter et al., 2005, pp. 256–257)

Notice in the first paragraph that Teter et al. (2005) begin with the larger picture—what percentage of
students report stimulant drug use over their lifetime. The paragraph then continues with results that are
more detailed, including drug use in the past year, drug use by men and women, and finally drug use
broken down by racial and ethnic background.

16.5.2 Tables, Figures, and Numbers
Tables and figures, which include graphs and pictures, are used in the results section to display and
summarize data. They should be numbered consecutively with one set of numbers for tables and a
second set for figures. When referring to a specific table or figure, the word Table or Figure is always
capitalized. References to specific tables or figures appear within sentences or in parentheses as
illustrated in the results section of the Teter et al. (2005) paper:

“The frequencies for each motive … are presented in Table 3.”

“The proportion of each motive … was relatively consistent (see Figure 1).”

“The data in Figure 1 do not represent …”

“Chi-square analysis revealed significantly higher … (see Table 4).”

“Data in Table 4 also show that …”

“Finally, AOD use was positively related to the number of motives … (See Table 5).

When referring to information from tables and figures, you should not repeat the numbers in the tables
or figures since the reader can see them. Instead, you should focus on identifying patterns or
highlighting the most relevant results. As one example from the Teter et al. (2005) paper, Table 3 shows
the exact number of students (not percentages) who gave zero, one, two, and three or more motives for
using stimulant drugs. Instead of repeating each of these numbers in the text, they write, “Approximately
half the students who endorsed the illicit use of prescription stimulants gave more than 1 motive for this
behavior.”

All tables and figures should have complete titles and labels so that the reader can understand the table
without having to read the additional text. A good rule of thumb is that if a table or figure falls out of a
book and someone picks it up, they should be able to understand it fully.

Finally, there are rules for writing out numbers in academic documents. The Publication Manual of the
American Psychological Association, which is used by the social sciences and referred to as APA style,



suggests that numbers one through nine should be spelled out and that numbers 10 and above should
be written as numerals (American Psychological Association, 2009).2 There are exceptions to these
rules. Any number can be written as a numeral when referencing tables or figures, grouping numbers
above and below 10 for comparison, and writing numbers that represent time, dates, and age.
Alternatively, numbers that begin sentences should always be written out.

16.5.3 Reporting Results From Statistical Tests
As described in earlier chapters, the method of reporting results from statistical tests will vary depending
on the publication source of the article and/or the audience. If you were writing a report for a newspaper
with a wide audience, you would indicate if there was a “statistically significant difference” when
comparing means or percentages. In a scholarly journal, however, you would need to include more
details about the tests and the results. APA style offers specific guidelines on reporting of statistics.
These rules are shown next, followed by examples of each of the statistical tests we have covered in
this textbook.

16.5.3.1 APA Style Rules for Reporting the Results of Statistical Tests

Report the descriptive statistics, including means and standard deviations.

Include the test statistic, degrees of freedom, and obtained value of the test.

Round test statistics and p-values to two decimal places.

Italicize all statistical symbols (excluding Greek letters)—N, n, M, SD, p, t, and so on.

Report the p-value (the probability of observing the result or a more extreme value) in one of two
ways:

Report the exact level (t(40) = 2.5, p = 0.02). If the p-value were less than 0.001, rather than
rounding this to two decimal places, you would write p < 0.001.

Use the alpha level (t(40) = 2.5, p < 0.05), assuming that your alpha level is 0.05.

For a regression, report the R2 value, the F value, the degrees of freedom in parentheses, and the
p value.

16.5.3.2 Examples

Reporting a significant difference in a sample mean compared with the population mean

Students who listened to Beethoven for 1 hour before taking the Scholastic Aptitude Test
scored higher (M = 1,642, SD = 18) than the national average of 1,250 (SD = 88), t(50) = 2.47,
p = 0.02.

Reporting a significant difference in two means



Students who multitasked while studying for an exam scored lower (M = 82, SD = 10) than
students who did not multitask (M = 88, SD = 12), t(56) = 2.10, p = 0.04.

Reporting a significant difference in more than two means

A one-way analysis of variance was conducted to examine the effect of car ownership type on
behavior toward bicyclists on the road. Drivers were divided into three groups based on the
cost of a new vehicle of the type that they were driving. The space between the passing car
and bicyclist was then measured on a 1-mile length of road in a suburban area. There was a
statistically significant difference in the average distance between the bicyclist and car among
the three categories F(2, 87) = 4.42, p = 0.02. Drivers with the most expensive cars allowed 2
feet of space on average between their car and bicyclists (SD = 1.3) compared with 2.5 feet
among drivers of midrange cars (SD = 1.2) and 3 feet among the drivers in the least expensive
car group (SD = 1.3).

Reporting a significant difference in percentages

A higher percentage of people in the age group 20 to 40 reported that they supported gun
control (85%) compared with those in the 41 to 60 age group (65%), χ2(1, n = 200) = 14.6, p <
0.001.

Reporting a significant correlation

Examining different regions of the world, a recent study showed a positive correlation between
greater air pollution and deaths caused by respiratory disease (r = 0.57, n = 42, p = 0.05).

Reporting results of a regression

The hours that students studied for an exam predicted their exam score, R2= .45, F(1, 422) =
6.88, p = 02

16.5.4 Active Versus Passive Voice and the Use of First-Person
Pronouns
It is important to use the active voice in writing whenever possible. One example is this:

Passive voice: It was shown that students who listen to Beethoven before an exam earn higher
scores.

Active voice: Our results show that students who listen to Beethoven before an exam earn higher
scores.



Regarding the first-person pronouns such as I or we, notice that in the active voice example, the
sentence begins with “our results” instead of “the results.” Generally, the first person is preferred when
describing tasks performed by the authors. In addition, a single author will often use “we” instead of “I.”
For example, “we find that many students …” This is sometimes thought of as the “collective we,” in
which you are including the audience in the plural pronoun. In other words, “we (as a group) can see
that the results are interesting.”

16.6 DISCUSSION
The purpose of the discussion section is to interpret your results and place them within the context of
the literature. Do your results agree or disagree with the literature or with theory? What are the possible
explanations for this? Even if your results are unexpected or not significant, it is still important to discuss
the implications. Generally, this section will not include any new statistics or even refer to tables or
figures from the results section. Instead, it highlights the major findings and offers explanations.

In addition to interpreting and highlighting the results, the discussion section is also used to offer
recommendations, identify limitations, and suggest areas for future research. The recommendations
should come strictly from the results of your study and are often related to policy implications. In the
paper by Talan and Kalinkara (2023) for example, they write the following:

In the current state, ChatGPT is capable of producing accurate responses within seconds.
However, it has limitations in interpreting visual aids such as diagrams, shapes, and tables,
which can be easily comprehended by human students. Thus, these visual aids need to be
explained in text form for ChatGPT to understand. Additionally, if a question is ambiguous or
incomprehensible, ChatGPT may produce an incorrect response. To mitigate this issue, it is
advisable to rephrase the question in a clear and precise manner.

Regarding limitations, all studies have them. They may arise from sampling, measurement of key
variables, or a fault in the questionnaire, for example. It is important to list them clearly so that the
readers can more accurately determine the quality of your work and its implications. If there are
limitations that you have not listed, but the reader can identify them, they may then assume that you are
not aware of these limitations and therefore question your entire paper. Or they may assume that you
are aware of them and are trying to hide the limitations. Overall, all papers should list their limitations
without hesitation. Below is an example of a list of limitations from the Teter et al. (2005) paper.

We should note several limitations in this study before readers assess the implications of our
findings. Our sample consists of students from a single campus, which limits the
generalizability of our results. In addition, our study sample was drawn from a predominantly
White student population attending a large public university. Therefore, our findings need to be
compared with more diverse samples (both of students attending college and young adults who
are not college students). Nonresponse may have introduced potential bias in the present
study; however, these concerns were somewhat reduced because the demographic
characteristics in the final obtained sample closely resembled the overall student population. In
addition, the rates of drug use in the present study were comparable to rates found in other
national substance use surveys of college students. We did not survey students about the
quantity of prescription stimulants they used illicitly per occasion. Also, we did not collect
information on the route of administration (i.e., intranasal or injection), which would have an
important impact on the long-term morbidity and mortality as well as the abuse potential of
stimulant medication. (p. 260)



Finally, almost all papers will suggest areas for future research. Some of these may come from the list of
limitations. For example, in the Teter et al. (2005) paper, they identify one of their limitations as choosing
a sample from one campus that is predominantly White. They suggest further research “in various
populations, such as urban residents, those not attending college, and those with diverse racial
backgrounds” (p. 261).

16.7 CONCLUSIONS
Conclusions are sometimes included as part of the discussion section of a paper, and at other times,
they are presented as the final section of the paper. Regardless of their location, conclusions are always
brief and frequently just one or two paragraphs. Rather than repeating information from the discussion
section, the conclusion section is used to summarize the main findings of the paper, relate them back to
the big ideas presented in the introduction, and emphasize their importance. An example from the Teter
et al. (2005) paper is as follows:

College students use prescription stimulants illicitly for many reasons. Our findings highlight the
importance of assessing the motives for the illicit use of prescription stimulants and suggest
that these motivations may be associated with greater use of alcohol and other drugs,
especially if the student reports the illicit use of such stimulants to counteract the effect of other
drugs or is using them to get high. In addition, those students who provide multiple motives for
the illicit use of prescription stimulants may also be using excessive amounts of AODs.
Although the long-term morbidity and mortality from these behaviors remain unknown, the
problem of prescription stimulant abuse exists in the college population and should be
addressed both clinically and experimentally. (p. 261)

Overall, this chapter on writing a research paper is a snapshot of the research process and an overview
of each section of a research paper. There are many excellent sources that go into much greater detail
about the research process and each part of the final paper. One source for further reading is The Craft
of Research by Booth, Colomb, Williams, Bizup, and Fitzgerald (2016). For a concise set of rules related
to writing, Weingast (2010) offers the Caltech Rules for Writing Papers.

EXERCISES
1. Find a newspaper or magazine article about the results of a recent study that used data. It can be in

any field such as health, economics, sociology, psychology, and so on. Then find the primary
source of the study in the scholarly journal where it was first published. Take one of the findings,
and copy exactly how it was reported in each of the two sources. Then, point out the differences in
the language used to report that finding.

2. Find two articles in a scholarly journal in your area of interest that include a literature review section.
Write an outline of each of the two literature reviews where each bullet in your outline is the topic of
one paragraph. How similar or different are the two literature reviews in their structure?

3. Using the same two articles from Question 2, write an outline of their data and/or methods section.
How do they differ, and how are they similar?

4. Using the same two articles from Question 2, summarize what the authors have identified as the
limitations of each study and the areas of future research.



APPENDIX 1: QUICK REFERENCE GUIDE TO STATA
COMMANDS
This appendix summarizes the Stata commands used throughout the book, as well as providing
screenshots of the output that the commands generate. Students may find this useful as they analyze
data sets using multiple statistics or hypothesis tests and need a quick reference.

The first section of this appendix lists the code that does not generate output. Instead, it is used to open
files, rename variables, create value labels, recode variables, and so forth. The remaining sections show
the output generated by Stata code from Chapters 6 through 14. While these figures are given new
numbers (“Appendix Figure A1.1,” for example), they are taken directly from the chapters. At the base of
each figure is a note indicating the number of the figure and the chapter where it appears. (“This is
Figure 6.1 from Chapter 6”, for example.) General commands are found above each output and use the
following abbreviations:

contvar = continuous variable

catvar = categorical variable

varname = can be either continuous or categorical

Figure A1.1 Frequency Table of College Types

Note: This is Figure 6.1 from Chapter 6.
Note: Tabulate can be abbreviated to “tab.” Tabulate produces frequency tables, whereas table generates other statistics. To generate
several frequency tables in a row, use “tab1 var1 var2 var3,” and so on.

TRANSFORMING AND DEFINING VARIABLES AND VALUES
PLUS GENERAL COMMANDS



Function Code
Open a file use “c:\file location\filename”
Rename a variable

rename originalvarname
newvarname

rename var1 gender

Create a variable label
label variable varname “any
description you like of any
length”

label variable gender “gender
of respondent”



Function Code
Create value labels

label def sexlabel 1 “female” 2
“male”

label val sex sexlabel

Add new value labels
label def sexlabel 3 “other”, add

label val sex sexlabel

Add new value labels and change existing ones
label def sexlabel 1 “male” 2
“female” 3 “other”, modify

(Note: Quotation marks are
only necessary in labels if there
is a space in the label names.)

List values of all observations of selected variables list varname1 varname2
Destring: Change format from string variable to numeric

destring varname, gen(numvar)
ignore(“,”)

(use the ignore command if
there are commas separating
numbers such as 1,000)

Recode variables
recode catvar (1 2=1 (3 4=2),
gen(newcatvar)

recode catvar (1/5=1) (6/10=2),
gen(newcatvar)

recode varname .=0,
gen(newvar)

(used when you want to
change missing values to zero)

Generate dummy variables (If you have a categorical variable,
catvar, with three or more categories, you can generate a dummy
variable for each category with these commands. You can
substitute any letter for “g” in parentheses.)

tab catvar, gen(g)

Generate dummy variables (If you allowed a respondent to choose
more than one category, each category will appear as its own
variable. To change each of these to a dummy or 0/1 variable, use
this.)

recode catvar1 .=0

recode catvar2 .=0



Function Code

Use only certain responses in your analysis

If you want to keep certain responses, you can use the keep if
command. This will remove the observations for all remaining
analyses until you use the clear command. The next time you
open the file, all observations will be there unless you saved the
data file after using keep if.

keep if varname < 21

if you prefer to temporarily use
some observations, but restore
all observations that were
removed, you can use the
following comamnd:

preserve

keep if varname < 21

restore

TABLES AND SUMMARY STATISTICS

tab catvar

tab1 catvar1 catvar2

Figure A1.2 Multiple Frequency Tables Using The Tab1 Command

Note: This is Figure 6.2 from Chapter 6.



sum contvar, detail

Figure A1.3 Percentiles and Median

Note: This is Figure 6.3 from Chapter 6.

sum contvar

Figure A1.4 Mean of College Size

Note: This is Figure 6.4 from Chapter 6.

table catvar, stat(mean contvar) stat(median contvar) nformat(%6.0fc)



Figure A1.5 Means And Medians For Subcategories

Note: This is Figure 6.5 from Chapter 6.

tab catvar, stat(mean contvar) stat(sd contvar)

Figure A1.6 Mean and Standard Deviation of College Debt by Type of Institution

Note: This is Figure 6.6 from Chapter 6.

tab catvar1 catvar2, row



Figure A1.7 Combining Two Categorical Variables Using The Tabulate Command

Note: This is Figure 6.7 from Chapter 6.

The variable with more categories should appear first since the table will be more likely to fit on a page.
When deciding on whether to generate row or column percentages, always add up over the
independent variable.

GRAPHS

Pie Chart

graph pie, over(catvar) plabel(_all percent) 
graph pie, over(Sector3) plabel(_all percent)



Figure A1.8 Pie Chart Of College Test Score Policies

Note: This is Figure 6.14 from Chapter 6.

Histogram

hist contvar, bin(1) frequency 
hist TotalPriceInStateOnCampus, bin(10) frequency

(Note: The bin command is not essential since Stata will try to choose the optimal number of bins.)



Figure A1.9 Histogram Of The Median Debt Owed By College Graduates Based On
The College Scorecard Data From April 23 – Usnews

Note: This is Figure 6.13 in Chapter 6.

Bar Chart With Continuous Variable Summarized Over a Categorical Variable

graph bar(mean) contvar, over(catvar) 
graph bar(mean) TotalPriceInStateOnCampus, over(Sector3)

Figure A1.10 Bar Graph Of Average Tuition By Type Of College



Note: This is Figure 6.11 from Chapter 6.

Box Plot

graph box contvar, over(catvar) 
graph box TotalPriceInStateOnCampus, over(Sector3)

Figure A1.11 Box Plot Of Average Tuition By Type Of Institution

Note: This is Figure 6.12 from Chapter 6.

TESTING HYPOTHESES

One-Sample t Test

ttest contvar==# (where # could be any number that you are testing)

Figure A1.12 Stata Output For The One-Sample t Test

Note: This is Figure 8.4 from Chapter 8.



Two Independent-Samples t Test

robvar contvar, by(catvar) 
ttest contvar, by(catvar) 
esize twosample contvar, by(catvar) cohensd unequal (or leave out unequal if variances 
are equal)

Figure A1.13 Istata Output For Equality Of Variance Test

Note: This is Figure 9.3 in Chapter 9.

Figure A1.14 Stata Output For Two-Sample T Test With Unequal Variances

Note: This is Figure 9.4 from Chapter 9.



Figure A1.15 Cohen’s D

Note: This is Figure 9.5 from Chapter 9.

One-Way Analysis of Variance

oneway contvar catvar

Figure A1.16 Stata Output For Anova With Bartlett’s Test

Note: This is Figure 10.5 from Chapter 10.

Comparing Two or More Percentages in a Cross-Tabulation

tab catvar1 catvar2, row V chi2



Figure A1.17 Stata Output For The Pearson Chisquared Test

Note: This is Figure 11.4 from Chapter 11.

Correlation Between Two Variables

pwcorr contvar1 contvar2, sig

Figure A1.18 Pearson Correlation Coefficient

Note: This is Figure 12.2 from Chapter 12.

REGRESSION ANALYSIS

Simple Regression Analysis

regress contvar var1



Figure A1.19 Simple Regression Analysis

Note: This is Figure 12.6 from Chapter 12.

Plot Data and Predicted Values From Regression Analysis

twoway (scatter y x) (lfit y x)

Figure A1.20 Scatter Plot Of Price And Mileage With Regression Line

Note: This is Figure 12.7 from Chapter 12.

Multiple Regression Analysis

regress contvar var1 var2 var3 var4



Figure A1.21 Multiple Regression (Version 1)

Note: This is Figure 12.8 from Chapter 12.

Testing Joint Hypotheses After Regression Analysis

test x1 x2

Figure A1.22 Testing Joint Hypotheses

Note: This is Figure 12.10 from Chapter 12.

Export Regression Results to Word

etable, export(filename.docx)



Figure A1.23 Regression Output In Word Format Using Etable

Note: This is Figure 12.12 from Chapter 12.

Plot Residuals Against an Independent Variable

rvpplot contvar

Figure A1.24 Scatterplot Of Residuals Against Mileage

Note: This is Figure 13.4 from Chapter 13.

Test for Omitted Variables

estat ovtest



Figure A1.25 Omitted Variable Test

Note: This is Figure 13.5 from Chapter 13.

Test for Multicollinearity

estat vif

Figure A1.26 Test For Multicollinearity

Note: This is Figure 13.10 from Chapter 13.

Check for Heteroscedasticity With Plot of Residuals on Predicted
Value



rvfplot

Figure A1.27 Scatter Plot Of Residuals Against Predicted Prices

Note: This is Figure 13.12 from Chapter 13.

Test for Heteroscedasticity

estat hettest

Figure A1.28 Test For Heteroscedasticity

Note: This is Figure 13.13 from Chapter 13.

Test for Normality in Residual

sktest resid



Note: “resid” is the variable name of the residual.

Figure A1.29 Test For Normality

Note: This is Figure 13.16 from Chapter 13.

Run a Logit Regression Model

logit binaryvar varname1 varname2 varname3

Figure A1.30 Logit Model Of Belief In Human-Caused Climate Change

Note: This is Figure 14.2 from Chapter 14.

Run a Probit Regression Model

probit binaryvar varname1 varname2 varname3

Calculate Marginal Effects in Logit or Probit Model



margins, dydx(contvar)

Figure A1.31 Marginal Effects And Prediction For A Logit Model

Note: This is Figure 14.3 from Chapter 14.

Ordered Logit Model of a Categorical Dependent Variable

ologit catvar varname1 varname2 varname3



Figure A1.32 Ordered Logit Model Of Happiness

Note: This is Figure 15.1 from Chapter 15.

Instrumental Variable Regression

ivregress 2sls depvar indvar1 indvar2 endvar(instrvar) 
[where depvar is the dependent variable, indvar are the independent variables, endvar 
is an endogenous explanatory variable, and instrvar is the instrument that predicts 
endvar] 

Test for Autocorrelation

estat dwatson

Test for Stationarity

dfuller varname1 varname2 varname3



Figure A1.33 Testing For Stationarity

Note: This is Figure 15.4 from Chapter 15.



APPENDIX 2: SUMMARY OF STATISTICAL TESTS BY
CHAPTER

Chapter Chapter
Title

Null
Hypothesis Test Info Known/Type

of Variables Procedures/Interpret



Chapter Chapter
Title

Null
Hypothesis Test Info Known/Type

of Variables Procedures/Interpret

7 The Normal
Distribution

There is no
difference in
SAT scores
among those
students who
took a
preparatory
course and
those who did
not.

z score or
standard score Single sample

Know population
mean

Know population
standard
deviation

1. Standard error of
mean = (σ/√n)

2. Standard score ((X
)/Standard error o
mean)

3. Look up percentag
for standard score
using normal
distribution

When the null hypothe
true, the probability of
observing a z score gr
than +1.41 or less than
−1.41 is less than 0.16
not reject the null
hypothesis.

8 Testing a
Hypothesis
About a
Single Mean

Students who
use ChatGPT
to generate
and practice
problems earn
86 on their
homework
score.

One-sample t test
Single sample

Know population
mean

Don’t know
population
standard
deviation

1. Standard error of
mean = (s/√n)

2. Standard score ((X
)/Standard error o
mean)

3. Look up area for t
statistic

When the null hypothe
true, the probability of
observing a t value gre
than 3.25 or less than
−3.25 is less than 0.00
Reject the null hypothe



Chapter Chapter
Title

Null
Hypothesis Test Info Known/Type

of Variables Procedures/Interpret

9 Testing a
Hypothesis
About Two
Independent
Means

There is no
difference in
the number of
mask-
mandated days
in Republican
and
Democratic
states.

Two independent-
samples t test

Two samples Two
populations 1. Standard error of t

mean difference =

√

s

2

1

n

1

+

s

2

2

n

2

2. Calculate t statisti
X

1

−X

2

√

s

2

1

n

1

+

s

2

2

n

2

3. Look up area for t
statistic

When the null hypothe
true, the probability of
observing an t value
greater than 5.1 or less
than −5.1 is less than 0
Reject the null hypothe

  Variances of
the two
populations are
equal.

Levene’s test of
equality of
variances

 
1. Use F test from ou

When the null hypothe
true, the probability of
observing an F value a
least as large as 1.56 i
greater than 0.05. Do n
reject the null hypothes

10 One-Way
Analysis of
Variance

There is no
difference in
SAT scores
among college
students from
families with
different levels
of income.

One-way ANOVA One categorical
variable and more
than two means

1. Calculate the F ra
by running the AN
to test

When the null hypothe
true, the probability of
observing an F ratio at
least as large as 78.69
less than 0.05. Reject 
null hypothesis.

  Variances of
the groups are
equal.

Bartlett’s test for
equal variances

 
1. Use the Bartlett’s 

from the output

When the null hypothe
true, the probability of
observing a chi-square
least as large as 159.5
less than 0.05. Reject 
null hypothesis.



Chapter Chapter
Title

Null
Hypothesis Test Info Known/Type

of Variables Procedures/Interpret

11 Cross-
Tabulation
and the Chi-
Square
Statistic

There is no
difference in
the education
level of men
and women
who use online
dating sites.

Chi-square
statistic Two categorical

variables

Comparing
percentages, not
means

1. Calculate the chi-
square statistic by
running the Pears
chi-squared test

When the null hypothe
true, the probability of
observing a chi-square
statistic at least as larg
395 is less than 0.05.
Reject the null hypothe

12 Linear
Regression
Analysis

There is no
correlation
between car
price and
mileage.

Pearson
correlation

Two continuous
variables Calculate the Pearson

correlation coefficient w
p value

−1 to +1 for perfect
negative or positive
relationship

If the p value of a
correlation is less than
0.05, reject the null
hypothesis that there is
correlation.

  There is no
linear
relationship
between car
price and any
of the
independent
variables.

F test of a
regression model One continuous

variable that is
the dependent
variable

One or more
independent
variables
(continuous or
binary) that affect
the dependent
variables

If the p value of the F
statistic for the equatio
less than 0.05, reject th
null hypothesis that all 
coefficients are zero.

  There is no
linear
relationship
between car
price and
mileage.

t test in a
regression model

If the p value of the t
statistic for an indepen
variable is less than 0.
reject the null hypothes
that the coefficient on t
variable is zero.

13 Regression
Diagnostics

There are no
omitted
variables that
are powers of y
or x.

Ramsey omitted
variable test

Used after
running
regression model
to check for
specification error

Run the Ramsey RESE
test of omitted variable
p value is less than 0.0
reject null hypothesis o
omitted variables.



Chapter Chapter
Title

Null
Hypothesis Test Info Known/Type

of Variables Procedures/Interpret

  The variance of
the error terms
is
homoscedastic.

Breusch–
Pagan/Cook–
Weisberg test of
heteroscedasticity

Used after
running
regression model
to check for
heteroscedasticity

Run the Breusch–
Pagan/Cook–Weisberg
of heteroscedasticity. I
value is less than 0.05
reject null hypothesis o
homoscedasticity.

  Residuals are
normally
distributed.

D’Agostino
skewness-
kurtosis test

Used after
running
regression model
to check
normality in
residuals

Run the D’Agostino K2

of normality. If p value 
less than 0.05, reject n
hypothesis of normally
distributed residual.

14 Regression
analysis
with binary
dependent
variables

Age, education,
and gender
each have no
effect on views
that climate
change is
caused by
humans

t-test on each
variable in a logit
model

Dependent
variable is binary
(e.g., whether or
not climate
change is caused
by humans) and
one or more
independent
variables

If the p value of the t
statistic in less than 0.0
then we reject the null
hypothesis that the
coefficient on this varia
is zero.

15 Introduction
to Advanced
Methods in
Regression
Analysis

Age, education,
and gender
each have no
effect on
probability of
falling into one
of several
happiness
categories.

t-test on each
variable in an
order logit model

Dependent
variable is
categorical and
nominal (e.g.,
three responses
to happiness
question)

If the p value of the t
statistic in less than 0.0
then we reject the null
hypothesis that the
coefficient on this varia
is zero.

  The residuals
in a time-series
regression
model are not
correlated with
each other.

Durbin–Watson
(DW) test of
residuals after a
time-series
regression model.

Regression
model in which
dependent and
independent
variables are
time-series
variables.

Calculate the Durbin–
Watson statistic of seri
correlation. If the DW
statistic is smaller than
critical value, we reject
null hypothesis of no
autocorrelation in the
residuals.

  A time-series
variable is
nonstationary.

Augmented
Dickey–Fuller
test.

Test is run on a
single time-series
variable

Run the Augmented
Dickey–Fuller test of
nonstationarity. If the p
value is less than 0.05
reject the null hypothes
that the variable is
nonstationary.

Note: SAT = Scholastic Aptitude Test; ANOVA = analysis of variance.



APPENDIX 3: DECISION TREE FOR
CHOOSING THE RIGHT STATISTIC

Figure A3.1 Decision Tree For Choosing the Right Statistic

Note: This is Figure 8.2 from Chapter 8.



APPENDIX 4: DECISION RULES
FOR STATISTICAL SIGNIFICANCE

NULL HYPOTHESIS (HO)

Hypothesis about the population

No difference among groups

It is never accepted or proved

It is rejected or not rejected

Example:

H

0

: μ

1

= μ

2

ALTERNATIVE HYPOTHESIS (H1 OR HA)

Opposite of the null hypothesis



Example

H

1

: μ

1

≠ μ

2

P VALUE OR P (CALCULATED)

The probability of rejecting the null hypothesis when it is true
(Type I error)

The probability of obtaining a result equal to or more extreme
than what was observed when the null hypothesis is true

Derived from sample results

Α LEVEL OR P (CRITICAL)

Predetermined upper limit of the probability of making a Type I
error

Significance level

Typically set at 0.05

DECISION RULE



Select α

If p ≤ α, reject the null hypothesis

If p > α, do not reject the null hypothesis



APPENDIX 5: AREAS UNDER THE NORMAL CURVE
(Z SCORES)

Figure A5.1 Areas Under the Normal Curve (Z Scores)

Note: This is Figure 7.6 from Chapter 7.



Z Scores
Probability
One-tailed Two-tailed

  0 0.50000 1.00000
0.1 0.46017 0.92034
0.2 0.42074 0.84148
0.3 0.38209 0.76418
0.4 0.34458 0.68916
0.5 0.30854 0.61708
0.6 0.27425 0.54851
0.7 0.24196 0.48393
0.8 0.21186 0.42371
0.9 0.18406 0.36812
  1 0.15866 0.31731



Z Scores
Probability
One-tailed Two-tailed

1.1 0.13567 0.27133
1.2 0.11507 0.23014
1.3 0.09680 0.19360
1.4 0.08076 0.16151
1.5 0.06681 0.13361
1.6 0.05480 0.10960
1.7 0.04457 0.08913
1.8 0.03593 0.07186
1.9 0.02872 0.05743
  2 0.02275 0.04550
2.1 0.01786 0.03573
2.2 0.01390 0.02781
2.3 0.01072 0.02145
2.4 0.00820 0.01640
2.5 0.00621 0.01242
2.6 0.00466 0.00932
2.7 0.00347 0.00693
2.8 0.00256 0.00511
2.9 0.00187 0.00373
  3 0.00135 0.00270
3.1 0.00097 0.00194
3.2 0.00069 0.00137
3.3 0.00048 0.00097
3.4 0.00034 0.00067
3.5 0.00023 0.00047
3.6 0.00016 0.00032
3.7 0.00011 0.00022
3.8 0.00007 0.00014
3.9 0.00005 0.00010

Note: All values are computed by the authors using Excel. This is Table 7.1 in Chapter 7.



APPENDIX 6: CRITICAL VALUES OF THE T
DISTRIBUTION

 Two-Tailed Test
Degrees of Freedom α = 0.05 α = 0.01
1 12.71 63.66
2   4.3   9.92
3   3.18   5.84
4   2.78   4.6
5   2.57   4.03
6   2.45   3.71
7   2.36   3.5



 Two-Tailed Test
Degrees of Freedom α = 0.05 α = 0.01
8   2.31   3.36
9   2.26   3.25
10   2.23   3.17
11   2.2   3.11
12   2.18   3.05
13   2.16   3.01
14   2.14   2.98
15   2.13   2.95
16   2.12   2.92
17   2.11   2.9
18   2.1   2.88
19   2.09   2.86
20   2.09   2.85
21   2.08   2.83
22   2.07   2.82
23   2.07   2.81
24   2.06   2.8
25   2.06   2.79
26   2.06   2.78
27   2.05   2.77
28   2.05   2.76
29   2.05   2.76
30   2.04   2.75
35   2.03   2.72
40   2.02   2.7
∞[Z]   1.96 2.58

Note: All values are computed by the authors using Excel.

Example:

If n = 30 so that the degrees of freedom are 29, the positive and negative t values corresponding with
5% of the area under the tails is +2.05 and −2.05, as illustrated below.



Figure A6.1 Two-tail probability when n = 30 and α = 0.05



APPENDIX 7: STATA CODE FOR RANDOM SAMPLING
This appendix provides Stata code to carry out different types of sampling. It is meant to accompany the
discussion of sampling methods in Chapter 2. However, we have put this material in an appendix
because it contains somewhat more advanced Stata code that will only be needed by students carrying
out multistage random sample surveys.

In this appendix, we start with simple random sampling and proceed to discuss more complex types of
sampling such as multistage sampling and stratification. We can use Stata or any spreadsheet software
to randomly select the sample. Table A7.1 shows some useful functions in Stata.

Stata Function Description Examples
=runiform() Creates a random number between 0 and 0.99999 gen x=runiform()
=runiform(a,b) Creates a random number between a and b (including

nonintegers)
gen
y=runiform(0.5,10.5)

=runiformint(a,b) Creates a random integer between a and b gen
z=runiformint(1,150)

SIMPLE RANDOM SAMPLING IN STATA
In this section, we work with the Stata file called “UScounties.dta” with a list of 3,142 counties in the
United States. Initially, we wish to draw a simple random sample of 100 of them. The probability of
selection for each county is 100/3142, or roughly 0.0318. We can select 100 counties randomly using
the Stata code shown in Figure A7.1.

Description

Figure A7.1 Simple Random Sample

The function “runiform()” creates a random number uniformly distributed between 0 and 1 for each
observation—that is, for each county. A uniform random number is a random number with equal



probability throughout the range. The variable “_n” is a Stata variable equal to the number of
observations in the database.

The do-file in Figure A7.1 gives every county a random number between 0 and 1, then sorts by this
number, so that the counties are now in random order. To pick a random sample of 100, the code just
selects the first 100 counties from the newly sorted list.1

SYSTEMATIC RANDOM SAMPLING IN STATA
The systematic random sample can be implemented easily in Stata. We need to calculate a starting
point, which identifies the first unit to be selected, and an interval, which determines the gap between
subsequent units. If the population is N and the desired sample is n, then the interval between selected
units is N/n, and the starting point is a random number between 1 and N/n.

Suppose we are working with the same list of 3,142 counties and wish to select 100 of them. The Stata
code in Figure A7.2 will select a systematic random sample.

Description

Figure A7.2 Single-Stage Systematic Random Sample

In this case, the interval is 3142/100 or 31.42. This means that each county (after the first one) will be
31 or 32 counties down the list from the previous one.

We identify the first unit to be selected with local ‘start.’ We need to use a local macro because we want
just one random number for the start value. Note that when referring to local macros, the name needs to
be placed inside left and right single quotation marks.

The next line defines the “select” variable to be 1 if the inequality is true and 0 if it is false. The mod(x,y)
function calculates the modulus, defined as the difference between x and the largest multiple of y that is
less than x. (It can also be calculated as x-y*int(x/y). The expression _n is a Stata variable indicating
the observation number. Whenever the modulus is less than 1, the expression (_n − start) has passed
another multiple of the interval, and it is time to select the county.

Earlier, we said that if the sampling frame is sorted by a variable, a systematic random sample spreads
out the sample across the values of that variable. In this case, the sampling frame is sorted by state,
from Alabama to Wyoming. A systematic random sample ensures (roughly) proportional representation
of each state. For example, Alabama has 67 counties, 2.1% of the counties in the country. With an
interval of 31.42, a systematic random sample will always include two or possibly three counties from
Alabama, corresponding to 2% or 3% of the sample. In contrast, a simple random sample might, by
chance, exclude all the counties in Alabama, or it might conceivably include all 67 of them. Systematic
random sampling is widely used in surveys because of this advantage and because it is only slightly
more complex than simple random sampling.

MULTISTAGE SAMPLING IN STATA



To demonstrate how to carry out multistage sampling in Stata, we will use the code for systematic
sampling for each stage. Figure A7.3 shows a set of Stata commands that selects 20 states and then
selects five counties in each state, using systematic random sampling in each level.

Description

Figure A7.3 Multistage Sampling With Stata

The first section of the do-file selects the 20 states. It starts with the file containing the list of counties
and then collapses to the state level. In other words, in the original file, each observation is a county, but
after the collapse, each observation is a state. After the collapse command, the state selection is similar
to the county selection in Figure A7.2. The do-file specifies the desired number of states, calculates the
interval between states, generates a random starting point, and then uses the mod(x,y) function to
select the states.

The second section of the code selects five counties in each of the 20 selected states. We use the
merge command to combine the list of selected states and the full list of counties. Then we drop the
counties that are in states that were not selected. The loop goes through the 20 states, carrying out a
systematic random selection of five counties in each. The preserve command stores the data in
memory, just before deleting the data for all but one of the states. After selecting and displaying the five
counties in that state, the restore command brings back the data for all 20 states and the loop goes on
to the next state.

In the end, the result is a list of 100 counties, composed of five counties from each of 20 states. Note
that Delaware has only three counties, so if it were one of the selected states, the do-file would select a
total of 98 counties.

STRATIFIED SAMPLING IN STATA
How do we draw a stratified sample using Stata? To keep it simple, we will consider a single-stage
sampling with two strata. Suppose we decide that we want to oversample counties with large
populations, either because we are particularly interested in those counties or because we believe that
large counties are more diverse, so our variables of interest have greater variance in large counties. As
shown in Figure A7.4, the first step is to define large counties. We generate a new variable “size,” equal



to 0 if the population is less than 500,000 and 1 if the population is greater than or equal to 500,000. We
use “preserve” to store a copy of the data (with the “size” variable). Next, large counties are removed
from the data, and 60 small counties are selected by systematic random sampling using the commands
in Figure A7.2. After restoring the full set of counties, we remove the small counties and repeat the
process, selecting 40 of the large counties.

Description

Figure A7.4 Stratified Random Sampling With Stata

There are only 134 large counties, 4.26% of the total. Because we stratified and oversampled large
counties, they represent 40% of the sample. In contrast, small counties account for 95.74% of all
counties but just 60% of the sample. Sampling weights can be used to calculate averages and
percentages for the population that compensate for the overrepresentation of large counties in the
sample.

KEY TERM

macro

Descriptions of Images and Figures
Back to Figure

* Simple random sampleset seed 1234 // sets seed to ensure same sample each time

clear // clears data from memory

use "c:/UScounties.dta" // opens file with list of counties

local n = 100 // defines desired sample size

gen sorter = runiform() // defines “sorter” to be random over 0-1

sort sorter // sort by random number

gen select=0 // create dummy indicating selected units

replace select=1 if _n<=`n’ // selects first `n’ units randomly



list if select==1 // show list of selected counties

Back to Figure

* Systematic random sample

set seed 1234 // sets seed to ensure same sample each time

clear // clears data from memory

use "c:/UScounties.dta" // opens file with list of counties

local n = 100 // defines desired sample size

local interval = _N/`n’ // defines interval between selected units

local start = runiform(0,`interval') / // defines random starting point

gen select = mod(_n-`start',`interval')<1 // selects `n’ counties systematically

list if select==1 // shows list of selected counties

Back to Figure

* Multi-stage systematic sampling

* Select n1 states

set seed 1234 // sets seed to ensure same sample each time

clear // clear data from memory

use "c:/UScounties.dta" // opens file with list of counties

local n1 = 20 // set number of states to select

local n2 = 5 // set number of counties/state to select

drop if state==9 // drop DC (only 1 county)

collapse (sum) population, by(state) // collapse to state level

local interval1 = _N/`n1’ // calculate interval between selected states

local start1 = runiform(0,`interval1') // generate random number for first state

gen select1 = mod(_n-`start1',`interval1')<1 // selects states

keep if select1==1 // keep only selected states

list // list selected states

gen statenbr = _n // create state counter for later

save "c:/SelectedStates", replace // save list of selected states for later

* Select n2 counties in each state clear



use "c:/UScounties.dta" // opens file with list of counties

drop if state==9 // drop DC

merge m:1 state using "c:/SelectedStates" // merge counties with selected states

keep if select1==1 // keep only counties in selected states

gen interval = . // define interval variable

gen select2 = . // define county selection variable

forvalues s = 1/`n1’ { // loop through s=1 to n1 states

preserve // save data in memory to be restored later

keep if statenbr==`s’ // keep only the state numbered `s'

local interval2 = _N/`n2’ // calculate interval between counties

local start2 = runiform(0,`interval2') // generate random number for first county

replace select2 = mod(_n-`start2',`interval2')<1 // select counties

list state county if select2==1 // list state & selected counties

restore // restore data in memory (all selected states)}

}

Back to Figure

* Stratification

set seed 1234 // saets seed to ensure same sample each time

clear // clears data from memory

use "c:/UScounties.dta" // opens file with list of counties

gen size = (population>=500000) // define "size" as 0 if <500k, 1 if >=500k

local n1 = 60 // defines sample for small counties

local n2 = 40 // defines sample for large counties

* Small counties

preserve // save copy of data

keep if size==0 // keep only small counties

local interval1 = _N/`n1’ // defines interval between selected units

local start1 = runiform(0,`interval1') // defines numbers used to start selection

gen select = mod(_n-`start1',`interval1')<1 // selects small counties



list state county population if select==1 // lists names of selected small counties

restore // restore data to point of preserve

* Large counties

keep if size==1 // keep only large counties

local interval2 = _N/`n2’ // defines interval between selected units

local start2 = runiform(0,`interval2') // defines rand nbrs to start selection

gen select = mod(_n-`start2',`interval2')<1 // selects large counties

list state county population if select==1 // lists names of selected large counties



APPENDIX 8: EXAMPLES OF NONLINEAR
FUNCTIONS
In Chapter 13, we discuss different ways to estimate nonlinear relationships using linear regression by
transforming the dependent variable (y) and/or the independent variables (xi). To illustrate the shape of
these nonlinear functions, we provide graphs of each type, along with the Stata code to generate the
graphs.

QUADRATIC FUNCTIONS
One common way to estimate a nonlinear relationship between y and x is to add powers of x, such as x2

and x3, to the regression equation as independent variables. Here, we consider the case of a quadratic
equation, which takes the following form:

y = β

0

+ β

1

x+ β

2

x

2

How do we graph this function using Stata? First, we generate a Stata data set with the variable x that
runs from 1 to 100. The set obs # command (where # is a number) creates an empty data file with #
observations. We then use the special Stata variable _n, which represents the row number, to create
values of x from 1 to 100. Next, we define the y variable, choosing values for the three coefficients: β0,
β1, and β2. After defining the y variable, we graph x and y as a line graph.1 A quadratic function with a
positive value for β2 creates a U-shaped graph, as shown in Figure A8.1.

Description



Figure A8.1 Quadratic Function With Positive Quadratic Coefficient

clear 
set obs 100 
gen x = _n 
gen y1 = 1000 – 50*x + x2 
twoway (line y1 x)

If β2 (the quadratic coefficient) is negative, as shown in the generate command below, the result is an
inverse U shape, as shown in Figure A8.2.

Description

Figure A8.2 Quadratic Function With Negative Quadratic Coefficient

gen y2 = 400 + 100*x – 0.8*x2 
twoway (line y2 x)

We are often interested in the marginal effect of x on y. In other words, what is the effect of a one-unit
change in x on y. Graphically, this is the slope of the graph of y on the vertical axis and x on the
horizontal axis. In a linear function, the marginal effect is simply the coefficient on the x variable, and it is
constant. But in a nonlinear relationship, the marginal effect of x on y changes over the ranges of x. We
can calculate the marginal effect using calculus. In the case of a quadratic equation with one
independent variable,

y = β

0

+ β

1

x+ β

2

x

2

and the marginal effect is expressed as



∂y

∂x

= β
1

+ 2β
2

x

This means the marginal effect is a function of the value of x. If β2 > 0, then the marginal effect (or
slope) rises as x increases, and the graph of y against x has a U shape. On the other hand, if β2 < 0, the
slope falls as x increases and the graph has an inverted U shape (∩). We can calculate the “turning
point” where the slope is horizontal by setting the marginal effect to 0 and solving for x.

∂y

∂x

= β
1

+ 2β
2

x = 0

x =

−β
1

2β
2

For example, the estimated equation for the data shown in Figure A8.2 is as follows:



y =  400 + 100x− 0.8x

2

This means that β0 = 400, β1 = 100, β2 = –0.8. Using the equation for the marginal effect,

∂y

∂x

= β
1

+ 2β
2

x = 100 + (2)(−0. 8)x = 100 − 1. 6x

The turning point is where x = −β1/2β2 = –100/((2)(−0.8)) = 62.5. The turning point is consistent with the
curve shown in Figure A8.2.

SEMILOG FUNCTIONS
Another way to estimate a nonlinear function with linear regression is to transform the dependent
variable by taking its natural logarithm. Here is the general form:

log(y) = β

0

+ β

1

x

Taking the exponential function of both sides, we can isolate y as follows:

y = exp(β

0

+ β

1

x)

where exp() raises e to the power of the expression in parentheses. If β1, the coefficient on x is positive,
and the relationship will be rising at an increasing rate, as shown in Figure A8.3.



Description

Figure A8.3 Semilog Function Using Log(Y) And Positive Coefficient

gen y3 = exp(1 + 0.05*x) 
twoway (line y3 x)

If we use the same functional form, but the β1 coefficient is negative, the line slopes down but never
crosses the horizontal (x) axis (see Figure A8.4). To be more precise, for each one-unit increase in x, y
declines by a fixed proportion.

Description



Figure A8.4 Semilog Function Using Log(Y) And Negative Coefficient

gen y4 = exp(5 – 0.02*x) 
twoway (line y4 x)

What is the marginal effect of this type of semilog function? If the function is

log(y) = β

0

+ β

1

x

then the marginal effect is

∂y

∂x

= β
1

y

In other words, for each unit increase in x, the value of y increases or decreases by a constant
proportion, which is determined by β1. In the example above, β1 = −0.02, so y declines by about 2% for
each one-unit increase in x. Because of compounding, the decline is actually about 1.98% per unit. In
other words, as x changes from, say, 50 to 51, the value of y decreases, which in turn lowers the rate of
change in y.

Another nonlinear function can be created by having the logarithm of x on the right side. With a positive
coefficient on log(x), the curve takes the form shown in Figure A8.5. The value of y rises indefinitely,
never reaching a maximum.



Description

Figure A8.5 Semilog Function Using Log(X) And Positive Coefficient

gen y5 = 1.5 + 4*log(x) 
twoway (line y5 x)

Alternatively, if the coefficient is negative, the curve slopes down, as shown in Figure A8.6.

Description

Figure A8.6 Semilog Function Using Log(X) And Negative Coefficient



gen y6 = 10 – 1.5*log(x) 
twoway (line y6 x)

The marginal effect of this type of semilog function can be calculated as follows:

∂y

∂x

=

β
1

x

In the example above, β1 = −1.5, so the marginal effect is −1.5/x. If x = 30, then the marginal effect is
−0.05.

DOUBLE-LOG FUNCTIONS
Another functional form is the double-log function, in which both y and x are transformed into logarithms:

log(y) = β

0

+ β

1

log(x)

As described previously, we need to take the exponential function of both sides in order to express the
equation in terms of y.

y = exp(β

0

+ β

1

log(x)) = exp(β

0

)x

β

1

= αx

β

1

where α = exp(β0). If the coefficient β1 is greater than 1, the function will rise at an increasing rate, as
shown in Figure A8.7.



Description

Figure A8.7 Double-Log Function With Positive Coefficient Greater Than 1

gen y7 = exp(3 + 1.5*log(x)) 
twoway (line y7 x)

If the coefficient is positive but less than 1, the function rises but at a decreasing rate, as shown in
Figure A8.8.

Description

Figure A8.8 Double-Log Function With Positive Coefficient Less Than 1



gen y8 = exp(3 + 0.5*log(x)) 
twoway (line y8 x)

On the other hand, if the coefficient is negative, then the function declines but never crosses the
horizontal (x) axis, as shown in Figure A8.9.

Description

Figure A8.9 Double-Log Function With Negative Coefficient

gen y9 = exp(5 – 0.5*log(x)) 
twoway (line y9 x)

The marginal effect of the double-log functional form can be calculated as follows:

∂y

∂x

= β
1

y

x



This can be rewritten as follows:

β
1

=

∂y/y

∂x/x

This means that the coefficient represents the ratio of the proportional change in y divided by the
proportional change in x, also called the elasticity of y with respect to x. In other words, one of the
characteristics of the double-log functional form is that the elasticity is constant. In the example above,
β1 = −0.5. This means that if x increases by 1%, y will decrease by 0.5%, and this relationship holds
throughout the range of x.

Table A8.1 summarizes the nonlinear functions discussed here and, for each one, the expression for
calculating marginal effect of x on y. In each case, the marginal effect varies with different values of x.

Name of Functional Form Functional Form Marginal Effect
Quadratic

y = β

0

+ β

1

x+ β

2

x

2

∂y

∂x

= β
1

+ 2β
2

x

Linear with interaction of two variables y = β

0

+ β

1

x

1

+ β

2

x

2

+ β

3

x

1

x

2

∂y

∂x

1

= β
1

+ β
3

x

2

Semilog [log y] log(y)  = β

0

+ β

1

x

∂y

∂x

= β
1

y

Semilog [log x] y = β

0

+ β

1

log(x)

∂y

∂x

=

β
1

x

Double log log(y)  = β

0

+ β

1

log(x)

∂y

∂x

= β
1

y

x

Descriptions of Images and Figures



Back to Figure

The horizontal x-axis has values from 0 to 100 in intervals of 20. The vertical y1axis has values 0 to
6000 in intervals of 2000. A U-shaped graph starts from 0 at 1000, a dip at 20 at the value of 500, and
reaches 100 at 6000.

Back to Figure

The horizontal x-axis has values from 0 to 100 in intervals of 20. The vertical y2axis has values 0 to
4000 in intervals of 1000. A U-shaped graph starts from 0 at 500, goes up with the peak value of 3500
at 60, and reaches 100 at 2500.

Back to Figure

The horizontal x-axis has values from 0 to 100 in intervals of 20. The vertical y3axis has values 0 to 400
in intervals of 100. An upward curve in the right direction reaches 400 at 100. The values at 20, 40, 60,
and 80 are approximately 10, 25, 50, 125.

Back to Figure

The horizontal x-axis has values from 0 to 100 in intervals of 20. The vertical y4axis has values 0 to 150
in intervals of 50. A downward curve in the right direction reaches 20 at 100. The values at 0, 20, 40, 60,
and 80 are approximately 148, 90, 60, 40, and 30.

Back to Figure

The horizontal x-axis has values from 0 to 100 in intervals of 20. The vertical y5axis has values 0 to 20
in intervals of 5. An upward curve in the right direction reaches 20 at 100. The values at 0, 20, 40, 60,
and 80 are approximately 2, 13, 16, 18, and 19.5.

Back to Figure

The horizontal x-axis has values from 0 to 100 in intervals of 20. The vertical y6axis has values 0 to 10
in intervals of 2. A downward curve in the right direction reaches 3 at 100. The values at 0, 20, 40, 60,
and 80 are approximately 10, 5.5, 4.5, 3.8, and 3.5.

Back to Figure

The horizontal x-axis has values from 0 to 100 in intervals of 20. The vertical y7axis has values 0 to
20000 in intervals of 5000. An upward curve in the right direction reaches 20000 at 100. The values at
0, 20, 40, 60, and 80 are approximately 0, 2400, 5000, 10000, and 15000.

Back to Figure

The horizontal x-axis has values from 0 to 100 in intervals of 20. The vertical y8axis has values 0 to 200
in intervals of 50. A downward curve in the right direction reaches 200 at 100. The values at 0, 20, 40,
60, and 80 are approximately 25, 90, 125, 150, and 180.

Back to Figure

The horizontal x-axis has values from 0 to 100 in intervals of 20. The vertical y9axis has values 0 to 150
in intervals of 50. A downward curve in the right direction reaches 18 at 100. The values at 0, 20, 40, 60,
and 80 are approximately 150, 35, 25, 20, and 19.



APPENDIX 9: ESTIMATING THE MINIMUM SAMPLE
SIZE
In Chapter 2, we discussed the factors that influence the necessary sample size. In that chapter, we
used the example of a survey of recent college graduates designed to see whether there is a difference
in salaries between men and women. In this appendix, we show how to calculate the minimum sample
size needed to achieve the desired level of precision in the results. These are called power calculations.

Table A9.1 describes five factors that help determine the minimum sample size needed. On the left side,
we repeat the description of the factors influencing the sample size from Chapter 2 in terms of the study
of gender differences in salaries. On the right side, we present the more technical description of the five
factors.

Intuitive Explanation Technical Explanation
How small a difference in salaries do we want to be able
measure?

Minimum detectable effect size

How much variation is there in salaries? Standard deviation of the variable of
interest

How small should the probability be of incorrectly
concluding that there is a difference between men and
women?

Alpha is the maximum probability of Type
I error that we are willing to accept.

How small should the probability be of making a mistake
when we state that there is no difference between men
and women?

Beta is the maximum Type II error that
we are willing to accept. The power of the
test is 1−β.

How was the sample selected? Design effect

According to the National Association of Colleges and Employers (2018), the average salary of a
student who graduated in 2017 was $51,022. Suppose we expect our sample of graduates to be close
to the national average in salaries and want to be able to detect a gender gap of at least 5%, or
(roughly) $2,500.

The standard deviation of the salaries of college graduates must be obtained from secondary data.
Suppose we find that the standard deviation of these salaries is $11,000.

A Type I error is to reject the null hypothesis (no gender difference) when it is true. In this case, the Type
I error would be to reject the equality of male and female wages when in fact they are equal. The



maximum acceptable probability of a Type I error is labeled alpha, or α. The convention in the social
sciences is to set α = 0.05—that is, to reject the null hypothesis only if the risk of being wrong is less
than 0.05.

Type II error is the risk of not rejecting the null hypothesis when it is false. In our case, it is the risk of
concluding that there is no gender difference in salaries when in fact there is one. The maximum
allowable probability of Type II error is labeled beta, or β. Researchers often set β at 0.20, although it
depends on the “cost” of being wrong. It is worth noting that the power of the test is 1 − β, or 0.80 in this
case.

The design effect is an adjustment for the sampling design, which may increase or reduce the precision
of estimates relative to a simple random sample. In this case, we will assume that we are able to draw a
simple random sample of recent graduates, so we do not need to take into account the design effect.

The command in Stata for carrying out power calculations is power. It can be used to estimate the
sample size based on the size effect, standard deviation, and levels of alpha and beta. Figure A9.1
shows the command and the resulting output. Translating into English, the command says, “What is the
sample size needed to detect a difference of $2,500 if the mean salary is $50,000, the standard
deviation is $11,000, the maximum acceptable probability of Type I error is 0.05, and the maximum
acceptable probability of Type II error is 0.20, assuming a simple random sample?”

Description

Figure A9.1 Power Calculations to Derive Sample Size

The output repeats the values of the parameters being used to calculate the sample size. The result is
shown at the bottom: We need a sample size of 610 graduates, including 305 men and 305 women.
Note that we did not actually need to include the options a(0.05) and b(0.20) because these are the
defaults. If we leave out these options, Stata will adopt α = 0.05 and β = 0.20.

Stata allows us to carry out multiple power calculations with one command by inserting number lists in
a(), b(), sd(), and diff(). A number list can be a series of numbers, such as “10, 20, 30, 40, 50,” or it can



be a range with step value such as “10(10)50,” which means from 10 to 50 in increments of 10.
Furthermore, if number lists are put into multiple options, Stata will carry out the calculations for all
combinations. In the example that follows, we check four different size effects and two levels of alpha.
The output is eight sample sizes, one for each combination of the four effect sizes and the two levels of
alpha.

Description

Figure A9.2 Power Calculations to Derive Sample Size with Multiple Parameters

The column “N” indicates the sample size needed for each value of delta (the effect size) and alpha. For
example, if we want to detect salary differences down to $2,000 at the 1% confidence level, we need a
sample of 1,418 graduates. At the other extreme, if we only need to detect a salary difference of $5,000
or more at the 5% confidence level, then a sample of just 154 graduates would suffice.

In this case, the power calculations were carried out to compare two sample means, hence the
twomeans option. However, the power command will also carry out power calculations for other types
of statistical tests:

onemean—Comparison of a sample mean with a fixed number. Example: Is the average salary for
graduates from this college greater than $50,000?

oneprop—Comparison of a sample mean with a fixed proportion. Example: Is the unemployment
rate for graduates from this college greater than 5%?

twoprop—Comparison of two sample proportions. Example: Is the unemployment rate different for
male and female graduates?



The power command is quite flexible and can be used in many other ways. Take the following
examples:

It can generate graphs or tables, giving the sample size required for different values of alpha, beta,
or the standard deviation.

It will also calculate the minimum detectable size effect based on the sample size, the standard
deviation, and alpha and beta.

It can calculate the power of the test (defined as 1 − β) based on the size effect, the standard
deviation, and alpha.

Starting with Stata 15, it is possible to incorporate the sampling design into the power calculations,
taking into account the design effect—that is, the effect of clustering and stratification on the
relationship between precision, risk of Types I and II error, and sample size.

In summary, the power command is a useful tool in the design of surveys for examining the relationship
between sample size and level of precision estimating parameters and carrying out statistical tests.

Descriptions of Images and Figures
Back to Figure

The calculation is as follows:

.power twomeans 5000, sd(11000) a(0.05) b(0.20) diff(2500)

Performing iteration…

Estimated sample sizes for a two-sample means test

t test asuming sd1 = sd2 = sd

Ho: m2 = m1 versus Ha: m2 !=m1

Study parameters:

alpha = 0.500

beta = 0.2000

delta = 2500.0000

m1 = 5.00e+04

m2 = 5.25e+04

diff = 2500.0000

sd = 1.10e+04

Estimated sample sizes:

N = 610

N per group = 305



Back to Figure

The calculation is as follows:

.power twomeans 5000, sd(11000) a(0.05 0.01) b(0.20) diff(2000 (1000) 5000)

Performing iteration…

Estimated sample sizes for a two-sample means test

t test asuming sd1 = sd2 = sd

Ho: m2 = m1 versus Ha: m2 !=m1

alpha beta N N1 N2 delta m1 m2
.05 .2 952 476 476 2000 50000 52000
.05 .2 426 213 213 3000 50000 53000
.05 .2 240 120 120 4000 50000 54000
.05 .2 154 77 77 5000 50000 55000
.01 .2 1418 709 709 2000 50000 52000
.01 .2 632 316 316 3000 50000 53000
.01 .2 358 179 179 4000 50000 54000
.01 .2 230 115 115 5000 50000 55000

diff sd
2000 11000
3000 11000
4000 11000
5000 11000
2000 11000
3000 11000
4000 11000
5000 11000



APPENDIX 10: DESCRIPTION OF
THE DATA SETS USED IN THE
TEXTBOOK

2014 ASQ - ADMITTED STUDENT
QUESTIONNAIRE
5,814 observations

66 variables

https://professionals.collegeboard.org/higher-ed/recruitment/asq

The Admitted Student Questionnaire (ASQ) is a market research tool
offered to academic institutions by the College Board. It allows
universities and colleges to explore the factors that led to student
decisions about how they choose colleges. In 2014, there were 10
institutions with a total of 5,814 students that chose to use the ASQ.

COLLEGE SCORECARD APRIL 2023 –
USNEWS
1,480 four-year colleges

45 variables

https://collegescorecard.ed.gov

https://www.usnews.com/best-colleges



This data set is a combination of the College Scorecard data set
from April 2023 and the U.S. News and World Report data on best
colleges from 2023. The College Scorecard data were created by the
U.S. government to help students compare colleges based on
various factors, including debt upon graduation, salaries six years
after graduation, and size. The data include more than 6,000
technical schools, colleges, and universities (including beauty
schools, massage therapy schools, etc.). The U.S. News and World
Report data from 2023 rank 1,859 four-year colleges based on
factors such as graduation rates, faculty resources, reputation, and
financial resources. The type and rank of each institution based on
U.S. News and World Report were added to the College Scorecard
data, and only those colleges that are listed both in U.S. News and
World Report and on the College Scorecard (1,480) are included in
this joint data set. Some colleges in U.S. News and World Report are
classified by type and region, but they are unranked. For these
colleges, the rank is reported as missing (“.a” in Stata).

COVID
50 observations or States

13 variables

This data set was compiled by the authors from multiple websites.
The number of mask mandate days was taken from Ballotpedia. The
rate of COVID-19 cases and death rates from COVID-19 were taken
from Statista. The party of the Electoral College votes for each state
during the 2020 presidential election in the United States was taken
from the National Archives. Each of these sites is listed below.

https://ballotpedia.org/State-
level_mask_requirements_in_response_to_the_coronavirus_(COVID
-19)_pandemic,_2020-2022



https://www.statista.com/statistics/1109004/coronavirus-covid19-
cases-rate-us-americans-by-state

https://www.statista.com/statistics/1109004/coronavirus-covid19-
cases-rate-us-americans-by-state

https://www.archives.gov/electoral-college/2020

EXAM
50 observations

1 variable

This is a fictitious data set of exam scores for 50 students.

FAO MAIZE PRICES
277 observations

7 variables

https://fpma.fao.org/giews/fpmat4/#/dashboard/tool/domestic

This database was extracted from the Food Price Monitoring and
Analysis (FPMA) Tool maintained by the United Nations Food and
Agriculture Organization (FAO). The FPMA Tool has hundreds price
series from close to 100 countries for dozens of commodities
covering up to 25 years of monthly data. The Stata file “FAO maize
prices.dta” contains seven variables: a month variable and wholesale
prices of maize from six cities in Latin America. The 227
observations cover January 2005 to November 2023.

GSS2021 – GENERAL SOCIAL SURVEY



4,032 respondents

739 variables

http://gss.norc.org

The General Social Survey (GSS) has been conducted since 1972.
Operated by the National Opinion Research Center (NORC), the
GSS examines trends in the attitudes and behaviors of Americans.

HOMEWORK
30 observations

1 variable

This is a fictious data set of the average homework scores of 30
students in a course who used ChatGPT to generate and practice
problems related to the course material.

LIBERAL ARTS COLLEGES –
USNEWS.DTA
204 four-year liberal arts colleges

49 variables

https://collegescorecard.ed.gov

https://www.usnews.com/best-colleges

This data set is a combination of the College Scorecard data set
from April 2023 and the U.S. News and World Report data on best
colleges from 2023. The College Scorecard data were created by the
U.S. government to help students compare colleges based on



various factors including debt upon graduation, salaries six years
after graduation, and size. It has over 6,000 technical schools,
colleges, and universities (including beauty schools, massage
therapy schools, etc.). The U.S. News and World Report data from
2023 rank 1,859 four-year colleges based on factors such as
graduation rates, faculty resources, reputation, and financial
resources. The type and rank of each institution based on U.S. News
and World Report were added to the College Scorecard data, and
only those colleges that are listed both in U.S. News and World
Report and on the College Scorecard and listed as a National Liberal
Arts College (204) are included in this joint data set. Some colleges
in U.S. News and World Report are classified by type and region, but
they are unranked. For these colleges, the rank is reported as
missing (“.a” in Stata).

NATIONAL SURVEY ON DRUG USE AND
HEALTH 2015
57,146 observations

2,666 variables

https://nsduhweb.rti.org/

The National Survey on Drug Use and Health (NSDUH) provides
information on tobacco, alcohol, and drug use and mental and
physical health issues in the United States. It has been conducted
since 1971.

NATIONAL SURVEY ON DRUG USE AND
HEALTH 2015 - TRUNCATED
57,146 observations



1,948 variables

This is the same data set as above but with many variables removed
in order to use this data set with a limited version of Stata that will
not accept as many variables.

CARS4SALE - NEW AND USED PRICES
OF GAS AND ELECTRIC CARS
1,100 cars

7 variables

https://www.cars.com/

This data set was generated by the authors using the Cars.com
website. It represents a search for all new and used cars for sale
within 20 miles of Burlington, Vermont, in June of 2023.

OKCUPID MOBILE DATING APP
59,948 observations

30 variables

This data set was made available by Kim and Escobedo-Land
(2015). It is data collected by OkCupid, a mobile dating app that
uses a precomputed compatibility score based on optional questions
users may answer. Based on users in the San Francisco area, it
contains data on age, sex, and sexual orientation and responses to
open-ended questions.



PU_SSOCS16 – SCHOOL SURVEY ON
CRIME AND SAFETY
2,092 observations

480 variables

https://nces.ed.gov/surveys/ssocs

The 2015–2016 School Survey on Crime and Safety is a nationally
representative survey of 3,500 public elementary and secondary
schools in the United States. It covers topics such as security, crime,
and parent involvement.



GLOSSARY
Alpha level:

The maximum acceptable probability of a Type I error (rejecting
the null hypothesis when it is true), set by the researcher before
starting the analysis. In social science research, alpha (α) is
often 0.05, which corresponds to a 95% confidence interval.

Alternative hypothesis:
The alternative of the null hypothesis. Often, the alternative
hypothesis (denoted H1 or Ha) is that a pattern observed in data
is the result of a nonrandom effect. For example, the null
hypothesis is that there is no change, and the alternative
hypothesis is that there is a change.

Analysis of variance (ANOVA):
A statistical method that tests for significant differences among
two or more means.

Autocorrelation:
A problem in regression analysis in which the error terms are
correlated (positively or negatively) with each other.

Bar graph:
A graph that uses rectangles, where the height or length of the
rectangles represents the numerical values of different groups.
For example, two bars could be used to represent the average
wage of male and female workers.

Bartlett’s test:
A test used to determine if the variances of several samples are
equal.

Binary variable (also called a dichotomous or dummy variable):



A type of variable that has a value of either 0 or 1. For example,
0 = male and 1 = female.

Bonferroni test:
A method of adjusting p-values when multiple tests are carried
out to take into account the fact that the likelihood of getting a
false positive (Type I error) rises with multiple tests.

Breusch–Pagan/Cook–Weisburg test:
A test for heteroscedasticity in a linear regression model.

Categorical responses:
Answers to a question that are limited to a fixed number of
options, each one defined by a group or label. The alternative is
continuous responses.

Categorical variable:
A variable that allows a limited number of values, each of which
represents a group and has no units (e.g., dollars or kilograms).
Examples include gender, political affiliation, and religion. The
alternative is continuous variables.

Chi-square distribution:
The probability distribution of the sum of squared variables,
each of which has a standard normal distribution. It has one
parameter, k, which describes the number of random variables.
It is often denoted by χ2 or χ2(k).

Chi-square statistic:
A statistic that tests for a relationship between two categorical
variables.

Cleaning data:
The process of examining data for errors and inconsistencies
and then correcting or dropping errors.

Closed-ended questions:



Questions that allow only predefined categorical responses or
numerical responses. The alternative is open-ended responses,
which allow unlimited numerical and text responses.

Coefficient or β:
In linear regression analysis, a measure of the effect of a one-
unit increase in an independent variable on the dependent
variable, holding constant other independent variables.

Coefficient of determination:
A statistic that measures the strength of the relationship
between two continuous variables. Denoted by R2, the
coefficient of determination varies between 0 (no relationship)
and 1 (perfect correlation).

Coefficient of variation:
The ratio of the standard deviation of a variable to the mean of
the variable. It is a unit-less measure of variability and is
abbreviated as CV.

Cohen’s d:
A measure of the size of the difference between two variables
relative to their standard deviations. It is usually used in
conjunction with measures of the statistical significance of the
difference.

Confidence interval:
A pair of numbers that indicate the level of precision in
measuring a number. For example, the 95% confidence interval
is a range such that there is a 95% probability that the true value
lies in that range.

Confidence level:
The probability that the true value of a parameter lies within a
specified range.

Continuous responses:



Answers to a question that represent a numerical count, usually
involving units such as hours, kilometers, or kilograms. The
alternative is categorical responses.

Continuous variable:
A variable whose values represent a measurement of some
quantity, usually involving units such as hours, kilometers, or
kilograms. The alternative is a categorical variable.

Correlation coefficient:
A measure of strength of the relationship between two
continuous variables. Denoted by r, it ranges from −1 (a perfect
negative relationship) to 1 (a perfect positive relationship).

Cramér’s V:
A measure of the strength of the relationship between two
categorical variables. It is used in conjunction with tests of
statistical significance such as the chi-squared test.

Critical value:
A threshold number that is compared with a test statistic to
determine whether to reject the null hypothesis. The critical
value is based on the alpha level, the type of probability
distribution, and whether a one-tailed or two-tailed test is being
used.

Cross tabulation:
A table that shows the number or percentage of observations in
each combination of two categorical variables.

Data analysis:
The process of converting raw data into usable results such as
tables, graphs, statistical tests, and regression analysis.

Degrees of freedom:
The number of independent observations in a sample minus the
number of parameters that must be estimated from sample data.



Dependent variable:
In regression analysis, the variable of interest that is being
explained by the independent variable(s). See independent
variable.

Descriptive statistics:
Basic statistics that summarize a set of variables such as
frequency tables for categorical variables and the mean,
standard deviation, minimum, and maximum of continuous
variables.

Do-file:
A type of file in Stata that contains a series of commands to be
carried out. Do-files have the file extension .do.

Enumerator:
A person responsible for carrying out interviews and recording
responses as part of a survey.

Endogeneity:
A problem in regression analysis where one or more
“independent” variables are influenced by the dependent
variable or both dependent and independent variables are
influenced by factors outside the model.

Error:
In regression analysis, it is the difference between an
observation and the true relationship between the dependent
variable and the independent variables. It is denoted by ε.

Estimate:
In statistics, an approximation of a population parameter
calculated from sample data. It may be a point estimate (the
most likely value) or an interval estimate (the confidence interval
around the point estimate).

Estimation:



A statistical procedure for generating one or more estimates,
usually with confidence interval(s). This term is also used more
narrowly to refer to generating a result that describes a
population based on a sample.

Estimator:
A method for calculating the value of an estimate.

Eta-square:
A measure of the size of the relationship in an ANOVA.

Exhaustive responses:
A set of answers that covers all possible responses to a
question. This is a goal in the design of a questionnaire.

Expected value:
In probability, the average result across all possible outcomes. It
is calculated as the weighted average of different values of the
variable, where the weights are the probabilities of getting each
value.

Frequency table:
A table that shows the number and/ or percentage of
observations for each value of a categorical variable.

F test:
A statistical test for a variable that has an F distribution under
the null hypothesis. For example, F tests can be used to
compare the means of two normally distributed variables with
the same variance.

General Social Survey:
A sociological survey of adults in the United States conducted
regularly since 1972 by the University of Chicago.

Heteroscedasticity:



A condition in which the variance of a variable differs across the
range of observations. If the error term in a regression model is
heteroscedastic, this violates the assumptions behind ordinary
least squares regression analysis. The alternative is
homoscedasticity.

Histogram:
A graph showing the distribution of one variable, where the
values of the variable are on the horizontal axis and the
frequency of observations is on the vertical axis.

Homoscedasticity:
A condition in which the variance of a variable is constant
across observations. It is one of the assumptions behind
ordinary least squares. The alternative is heteroscedasticity.

Hypothesis:
An educated guess regarding the outcome of a test or
experiment, which will be tested using data.

Imputation:
The practice of replacing missing values of a variable with
estimates based on values of the same variable and/or other
variables. A simple example would be replacing missing values
with the mean of the variable.

Independence of observations:
The condition where each observation has no effect on other
observations.

Independent variable:
A variable that causes or predicts the dependent variable. Also
called the explanatory variable. See dependent variable.

Intercept:
In a graph, the value of Y when X = 0. In a regression equation,
it is also called the constant.



Interval scale:
A type of measurement scale in which the difference between
values is meaningful (based on measured units) but the zero is
arbitrary. Examples include temperature in Fahrenheit or Celsius
and year. See also nominal scale, ordinal scale, ratio scale.

Kurtosis:
A measure of the “thickness” of the tails in a probability
distribution. The kurtosis of a normal distribution is 3.

Leading question:
A question that is phrased in a way that prompts or encourages
a particular response. Leading questions should be avoided in
research questionnaires.

Levene’s test:
A test of the null hypothesis that the variance in two or more
groups is the same.

Likert scale:
A set of responses designed to capture the strength of
agreement with a statement or an evaluation of an object or
experience. Typically, a Likert scale uses five responses, with
the middle one being neutral.

Linear regression:
A statistical method that identifies a linear equation that best fits
the relationship between one dependent variable and one or
more independent (or explanatory) variables, subject to some
assumptions.

Literature:
A set of scholarly papers that describe the results of research on
a topic.

Log file:



A type of file that contains both commands and the output from
those commands. In Stata, log files have one of two possible
extensions: .log or .smcl.

Logit regression:
A statistical method for identifying the nonlinear equation that
best fits the relationship between a binary dependent variable
and one or more independent (or explanatory) variables, subject
to some assumptions. Also called logistic regression. It is similar
to a probit regression but uses a different function.

Macro:
In Stata, a temporary variable that can be used in loops and
other programming. Stata has local and global macros.

Marginal effect:
In regression analysis, the impact of a one-unit increase in an
independent variable on the dependent variable. In a graph of y
as a function of x, the marginal effect is the slope of the line.

Margin of error:
The maximum expected difference between the true value and a
sample estimate of a parameter due to sampling for a given
probability. The margin of error may be expressed at different
confidence levels, most commonly 95%.

Mean:
The average value of a set of numbers or the expected value of
a probability distribution.

Measurement error:
The difference between a measured value of an observation
and its true value.

Median:
The middle value of a set of numbers, such that there are equal
numbers of observations greater and less than this value. It is



equivalent to the 50th percentile.

Multicollinearity:
In regression analysis, a condition in which two or more
independent variables are closely correlated with one another.
Multicollinearity reduces the precision of coefficient estimates
but does not make them biased.

Multiple regression analysis:
A statistical method for estimating the relationship between a
dependent variable and two or more independent variables. See
also regression analysis, simple regression analysis.

Nominal scale:
A scale for categorical variables in which each value describes a
category or label with no natural order. The values are not
measured, so the interval between values is not meaningful.
Examples include sex (male and female) and region (north,
center, south). See also interval scale, ordinal scale, ratio scale.

Nonnormality:
A condition in which a variable is not normally distributed. In
regression, it refers to the situation where the error terms are
not normally distributed.

Nontechnical audience:
A type of reader or listener who does not have advanced
training in a topic. In the context of this book, it refers to those
who do not have a background in statistical methods.

Normal distribution:
A probability distribution that occurs frequently in statistics,
having two parameters: the mean and the standard deviation.
The normal distribution has a symmetric bell shape with infinite
tails on either side.

Null hypothesis:



The null hypothesis is a testable statement indicating that there
is no significant difference in a set of observations. For example,
in comparing two means, the null hypothesis is that there is no
difference. In regression analysis, the null hypothesis is usually
that the coefficients are zero.

Observation:
One element of a variable or a set of variables. Each
observation is usually represented as a row in a database. See
unit of observation.

One-sample t test:
A statistical test that compares a sample mean with a fixed
(nonrandom) number.

One-tailed test:
A test of a null hypothesis in which the alternative hypothesis is
expressed as an inequality (greater than or less than).

Open-ended questions:
Questions that leave room for respondents to answer in their
own words. See closed-ended questions.

Ordinal scale:
A scale for categorical variables in which each value describes a
category or label with a natural order, but they are not
measured, so the interval between values is not meaningful.
Examples include quality (good, better, best) and military rank.
See also interval scale, nominal scale, ratio scale.

Outlier:
An observation that lies extremely far from the mean or median.
It is sometimes defined in terms of the number of standard
deviations from the mean.

Parameter:



A measurable characteristic of a population, such as the mean
or the standard deviation. In contrast, a statistic is a
characteristic of a sample.

Pearson’s chi-square:
A statistical test applied to sets of categorical data to test the
null hypothesis that there are no differences between the sets. It
could be used to test whether there is a gender difference in
political party affiliation (two categorical variables).

Percentile:
The percentage of observations of a variable that are below a
given value. For example, 100 is the 30th percentile if 30% of
the observations are below 100.

Pie graph:
A circular graph divided into slices, where each slice represents
a category and the size of the slice represents the percentage of
observations in this category. Also called a pie chart.

Population:
The complete set of observations that can be made. For
example, the population of car dealers in the United States is
the full list of all car dealers.

Predicted value:
In regression analysis, the value of the dependent variable that
is expected for each observation based on the values of the
independent variables and the estimated coefficients.

Probit regression:
A statistical method for identifying the nonlinear equation that
best fits the relationship between a binary dependent variable
and one or more independent (or explanatory) variables, subject
to some assumptions. It is similar to a logit regression but uses
a different function.



Purposive sampling:
A method of selecting a sample that does not rely on random
selection.

p-Value:
The probability that a test statistic is larger than the observed
value if the null hypothesis is true and if the assumptions behind
the test are valid. A low p-value (often <0.05) is interpreted as a
rejection of the null hypothesis.

Questionnaire:
A set of questions and rules for coding the responses that is
used to guide an interview and collect data for a study.

Random sampling:
A group of methods for selecting a subset of the population
where the selection is made using random numbers. Types of
random sampling include simple random sampling, stratified
random sampling, and multistage random sampling.

Ratio scale:
A type of measurement scale for continuous variables in which
the interval is meaningful (based on measured units) and there
is a natural zero. Examples include income, weight, and length.
See also interval scale, nominal scale, ordinal scale.

Regression analysis:
A statistical method for estimating the relationship between a
dependent variable and one or more independent variables. See
also multiple regression analysis, simple regression analysis.

Research question:
The query that a researcher attempts to answer in a study.

Residual:
In regression analysis, the difference between the predicted
value of the dependent variable and the observed value. It is



often denoted by e.

Sample:
A subset of observations selected from a population to make
inferences about the population. For example, a sample of
1,000 voters may be selected to make inferences about the
popularity of a candidate.

Sampling distribution:
The distribution of all possible values of a statistic.

Sampling weights:
Numbers used to compensate for the under- and oversampling
caused by the sampling design so that the weighted sample
statistics are unbiased estimates of population parameters. The
weights are calculated as the inverse of the probability of
selection.

Significance level:
The probability of committing a Type I error, meaning rejecting
the null hypothesis when it is actually true.

Simple random sample:
A sampling method in which the researcher starts with a full list
of the population and selects a sample with each unit having an
equal probability of selection.

Simple regression analysis:
A statistical method for estimating the relationship between a
dependent variable and one independent variable. See also
multiple regression analysis, regression analysis.

Skewness:
A characteristic of a probability distribution that is often used to
assess the level of asymmetry. A symmetric distribution has a
skewness of zero, though the reverse is not always true.



Skip patterns:
In questionnaire design, the rules for skipping over questions
based on the responses to earlier questions. For example, if the
respondent is single, the skip patterns indicate that one should
skip over questions about his or her spouse.

Specification error:
A problem in regression analysis where the model is missing
important variables or has the wrong functional form.

Standard deviation:
A statistic that measures the degree of dispersion around the
mean. The standard deviation is the square root of the variance.

Standard error of the mean:
The standard deviation of the means of all possible samples
from a population. An estimate of this parameter can be
calculated as the standard deviation of the sample divided by
the square root of the sample size.

Statistic:
A measurable characteristic of a sample, such as the sample
mean or the sample standard deviation. In contrast, parameters
are characteristics of the population.

Statistically significant:
A condition in which the probability of Type I error (rejecting the
null hypothesis when it is true) is below the value of alpha (the
highest acceptable level of Type I error). In practice, it is often
defined as when the p-value is less than 0.05, indicating that the
95% confidence interval does not include zero.

Strata:
In sampling, groups within a population, each with their own
sampling design. The singular is stratum.

Stratification:



In sampling, the process of dividing the population into groups
(or strata) and having a different sampling design for each one.
For example, a population may be stratified by region or by
income group.

Systematic random sample:
A random sampling of units characterized by an equal interval
between selected units. It is used to ensure that the sample is
dispersed across the population in the dimension in which they
are sorted.

t Distribution:
A probability distribution that results from estimating the mean
from a normal distribution with a small sample.

Technical audience:
Readers or listeners who have some training in scientific
methods and statistics. The type of audience influences the
appropriate writing style.

Two independent-samples t test:
Compares the means of two independent groups to determine
whether there is statistical evidence that the population means
are different from each other.

Type I error:
The error of rejecting the null hypothesis when it is true.

Type II error:
The error of accepting the null hypothesis when it is false.

Unit of observation:
An object about which information is collected. For example, in
survey data, the unit of observation may be people, households,
companies, or some other category of objects. See observation.

Variable:



A quantified characteristic or attribute of each observation that
varies across observations. In a database, each variable is
usually represented by a column of numbers.

Variance:
A parameter used to indicate the degree of dispersion in a
variable. It is the square of the standard deviation.

Z score:
The value of an observation minus the mean, divided by the
standard deviation. In other words, it measures how many
standard deviations above or below the mean an observation is.
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ENDNOTES



Chapter 1
1. The home page of a journal will indicate if and how articles are
peer reviewed.

2. Note that the title of this section is “Examine the Data or Other
Evidence.” Not all research is based on data. Research can also be
theoretical, conceptual, or exploratory, for example.



Chapter 4
1. Many students in a course related to Stata may not have Stata
installed on their own computers. By converting the log to text, they
can review their work on their own computers without Stata. If,
however, you do have Stata on your computer, the smcl files within
Stata are easier to read than text files outside of Stata.

2. When using the log on and log off commands, Stata keeps the
log file open and ready to use. If you then want to use a new log file
in the do-file, you will get an error message.



Chapter 5
1. For a complete review of outliers and advanced methods for
dealing with them, see Osborne (2012).

2. A less transparent but more streamlined approach to recode and
generate the new variable maritalstat would be recode mar1 2/5=2,
generate(maritalstat).



Chapter 6
1. To find multiple modes for “Size,” we would use the following
code:

egen mode = mode(ugds), nummode(1) 
egen mode2 = mode(ugds), nummode(2)

The first line of the command tells Stata to create a new variable,
mode1, which is the lowest mode of the variable ugds. Similarly, the
second line tells Stata to create a new variable, mode2, which is the
second lowest value of the mode. If we added lines of code with 3, 4,
and 5 at the end, Stata would tell us that there are only four modes
when running the fifth line. Finally, to see what these modes are, we
would generate a frequency table of the four new variables—tab1
mode1 mode2 mode3 mode4.



Chapter 7
1. The exam.dta data set is a simulated data set. It does not
represent actual grades of any students.

2. There are many books written entirely about the central limit
theorem. For a concise description of the central limit theorem, along
with its key components and why it is useful, please refer to this
Investopedia site:
https://www.investopedia.com/terms/c/central_limit_theorem.asp



Chapter 9
1. Sources for these data can be found at these links:

https://ballotpedia.org/State-
level_mask_requirements_in_response_to_the_coronavirus_(COVID
-19)_pandemic,_2020-2022

https://www.archives.gov/electoral-college/2020

2. The calculation for Levene’s test of equality of variances is as
follows:
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Where k is the number of different groups to which the sampled
cases belong. Ni is the number of cases in the ith group. N is the
total number of cases in all groups. Yij is the value of the measured
variable for the jth case from the ith group.
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3. The W50 row tests the variance relative to the median value. The
W10 uses a trimmed mean with 10% of extreme values trimmed.

4. A full description of Satterthwaite’s degrees of freedom and their
calculation can be found at this website:
https://www.statology.org/satterthwaite-approximation



Chapter 10
1. Two other tests, the Tukey method and the Scheffe method, are
similar to the Bonferroni correction. Alternative methods to address
unequal variances include the Welch’s ANOVA and nonparametric
tests such as the Kruskal-Wallis test.

2. Refer to Chapter 8 for a discussion of degrees of freedom.



Chapter 11
1. Stata can calculate the p value as well using the commands
display chi2tail(1,379), but it will not show the graph.

2. In the case of a 2 × 2 table, the Cramér’s V is equivalent to the Phi
coefficient, which is used to test the effect size for 2 × 2 tables.

3. For a more complete explanation of Cramér’s V and other
measures of association, please refer to this website:
www.statisticssolutions.com/nominal-variable-association



Chapter 12
1. This equation has an intuitive interpretation for those with some
statistics background. The correlation coefficient is the ratio of (a) the
covariance of x and y and (b) the product of the standard deviation of
x and the standard deviation of y.

2. This equation is similar to one that may be familiar from algebra
classes, y = Mx + B, with different notation and the addition of the
error term, ε. The slope is M in this equation and β1 in the regression
equation, while the y-intercept is B here and β0 in the regression
equation.

3. To be consistent, we could label the residual ε̂, since it is an
estimate of the error term, but we follow the convention in statistics
of labeling it e.

4. The intuitive explanation is that the independent variables in a
regression model cannot include any redundant information. If there
are three categories, they can be represented by two dummy
variables. Adding a third dummy variable would not add any new
information.

5. In this database, new cars represent just 27% of gas cars, 50% of
hybrid cars, and 75% of electric cars.



Chapter 13
1. This is always true when there is just one independent variable
and usually true when there are multiple independent variables.

2. Like all statistical software, Stata generates pseudorandom
numbers starting with a “seed.” By fixing the seed, we can ensure
that Stata generates the same set of random numbers in multiple
runs or runs by different users. The “2314” is arbitrary, but the seed
must be a positive integer.

3. We add the condition “& mileage!=.” to this command to exclude
observations with missing mileage. Stata treats missing values as
very high values so they would be included in the display without this
condition.

4. In the database, year refers to the model year of the car. Typically,
car companies release the new year’s models toward the end of the
previous year. As a result, 39 of the cars in the database are 2024
models, so the “age” of these cars is −1.

5. Technically, correlation between the independent variables and
the error term is the underlying cause of biased OLS coefficients
when there is measurement error in the independent variables
(Section 13.2), specification error (Section 13.3), and endogeneity
(Section 13.7). However, for teaching purposes, we find it useful to
consider these separate topics.



Chapter 14
1. The terms logit regression and logistic regression can be used
interchangeably.

2. Strictly speaking, in order to make a profit, betting companies offer
payout odds slightly less than implied by the perceived probabilities.
For example, if two evenly matched teams are playing, the perceived
probabilities that each will win is 50%, implying payoff odds of 1-to-1.
However, betting companies offer slightly lower payoffs for each
team, say 9-to-10. For this reason, the sum of implied probabilities
across outcomes is slightly greater than 100%, in this case, 1 − [9 /
(9 + 10)] = 0.526 = 52.6% for each team.



Chapter 16
1. For a nice summary of when to quote and when to paraphrase,
see Jerman (2012).

2. The humanities and some social science fields use the Chicago
Manual of Style, which suggests spelling out numbers 1 through 99
and using numerals for all higher numbers (University of Chicago
Press, 2010).

Appendix 7
1. Thanks to Bill Rising from Stata Corporation for suggesting this
approach, as well as for improvements in the other do-files in this
appendix.

Appendix 8
1. Stata also offers a way to generate graphs directly from the
twoway command. The above quadratic function can be graphed
with the command: twoway function y1 = 1000 – 50*x + x^2,
range(0 100). This approach is more concise but somewhat less
transparent to the new Stata user.
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